검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        1997.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In vitro development of bovine embryos is affected by many factors such as energy substrates, amino acids, and some growth factors. It has been reported that mRNA of insulin, PDGF and their receptors are detected in cow embryos, and that some chelating agents such as EDTA and transferrin have beneficial role on mouse and bovine embryos. The author hypothesized that insulin, transferrin arid PDGF added to a culture medium increase in vitro development of bovine embryos by chelating toxic substance(s) or increasing cell growth and metabolism. Immature oocytes from slaughtered ovaries of Holstein cows and heifers were matured for 24 hours in a TCM199 containing 10% fetal calf serum, FSH, LH and estradiol with granulosa cells in vitro. Matured oocytes were coincubated with sperm for 30 hours in a modified Tyrode's medium (IVF). Embryos cleaved to 2- to 4-cell at 30 hours after IVF were selected and cultured in a 30-l drop of a synthetic oviduct fluid medium (SOFM) containing 0.8% BSA, Minimum Essential Medium essential and non-essential amino acids, and insulin, transferrin or PDGF for 9 days. Supplementation of a SOFM with insulin, and /or transferrin did not increase develop-mental rate to expanding and hatching blastocyst of 2- to 4-cell bovine embryos compared with control. The highest developmental rate to hatching blastocyst was shown when PDGF was added at the concentration of 10 ng /ml among the supplementing doses tested in the present study (p<0.05). Addition of PDGF without insulin to a SOFM could not increase embrye development, but combined addition of PDGF with insulin significantly increased (p<0.05) embryo development to hatching blastocyst (50%) compared with control (38%). In conclusion, insulin and PDGF supplemented to a SOFM may act synergistically and have beneficial effect on in vitro development of 2- to 4-cell bovine embryos matured and fertilized in vitro.
        4,000원
        2.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        Human adult stem cells have widely been examined for their clinical application including their wound healing effect in vivo. To function as therapeutic cells, however, cells must represent the ability of directed migration in response to signals. This study aimed to investigate the mechanism of platelet-derived growth factor (PDGF)-induced migration of the human abdominal adipose-derived stem cells (hADSCs) in vitro. A general matrix metalloproteinase (MMP) inhibitor or a MMP2 inhibitor significantly inhibited the PDGF-induced migration. PDGF treatment exhibited greater mRNA level and denser protein level of MMP1. The conditioned medium of PDGF-treated cells showed a caseinolytic activity of MMP1. Transfection of cells with siRNA against MMP1 significantly inhibited MMP1 expression, its caseinolytic activity, and cell migration following PDGF treatment. Phosphatidylinositol 3-kinase (PI3K) inhibitor reduced the migration by about 50% without affecting ERK and MLC proteins. Rho-associated protein kinase inhibitor mostly abolished the migration and MLC proteins. The results suggest that PDGF might signal hADSCs through PI3K, and MMP1 activity could play an important role in this PDGF-induced migration in vitro.