Equine chorionic gonadotropin (eCG) is a unique molecule that elicits the response characteristics of both follicle- stimulating hormone (FSH) and luteinizing hormone (LH) in other species. Previous studies from this laboratory had demonstrated that recombinant eCG (rec-eCG) from Chinese hamster ovary (CHO-K1) cells exhibited both FSH- and LH-like activity in rat granulosa and Leydig cells. In this study, we analyzed receptor internalization through rec-eCGs, wild type eCG (eCGβ/α) and mutant eCG (eCGβ/αΔ56) with an N-linked oligosaccharide at Asn56 of the α-subunit. Both the rec-eCGs were obtained from CHO-K1 cells. The agonist activation of receptors was analyzed by measuring stimulation time and concentrations of rec-eCGs. Internalization values in the stably selected rat follicle-stimulating hormone receptor (rFSHR) and rat luteinizing/ chorionic gonadotropin receptor (rLH/CGR) were highest at 50 min after stimulation with 10 ng of rec-eCGβ/α. The dose-dependent response was highest when 10 ng of rec-eCGβ/α was used. The deglycosylated eCGβ/αΔ56 mutant did not enhance the agonist-stimulated internalization. We concluded that the state of activation of rFSHR and rLH/CGR could be modulated through agonist-stimulated internalization. Our results suggested that the eLH/CGRs are mostly internalized within 60 min by agonist-stimulation by rec-eCG. We also suggested that the lack of responsiveness of the deglycosylated eCGβ/ αΔ56 was likely because the site of glycosylation played a pivotal role in agonist-stimulated internalization in cells expressing rFSHR and rLH/CGR.
4-Nonylphenol (NP) is a surfactant that is a well-known and widespread estrogenic endocrine disrupting chemical (EDC). Although it has been known that the affinity of NP to ERs is low, it has been suggested that low-dose NP has toxicity. In the present study, the endocrine disrupting effects on reproduction, and the weight of gonads, epididymis, and uterus were evaluated with the chronic lower-dose NP exposing. This study was designed by following the OECD test guideline 443 and subjected to a complete necropsy. In male, NP had an effect on the weight of the testis and epididymis in both F0 and F1. In females, NP decreased the weight of ovary and uterus in F0 but not in pre-pubertal F1 pubs. Fertility of male and female in F0 or F1 was no related with NP administration. The number of caudal-epididymal sperm by body weight (BW) was not different between groups in both F0 and F1. Besides, the difference of the sperm number between generations was not detected. The number of ovulated oocytes was similar between groups in F0, but significantly decreased in NP 50 group of F1. The litter size and sex ratios of offspring in F1 and F2 were not different. The accumulated mating rate and gestation period were not affected by the NP administration. Those results shows that chronic lower-dose NP administration has an effect of endocrine disruptor on the weight of gonads and epididymis of F0 and F1 but not in reproduction. Based on the results, it is suggested that chronic lower-dose NP exposing causes endocrine disruption in the weight of gonad and epididymis but not in the reproductive ability of next generations.
This study was conducted to investigate stimulatory effect of epidermal growth factor (EGF) on nuclear maturation and the expression level of EGF-receptor (EGFR), GM-130 (a marker of Golgi apparatus), transport protein Sec61 subunit beta (Sec61β), and coatomer protein complex subunit gamma 2 (COPG2) in porcine oocytes. The cumulus-oocyte complexes were collected from follicle with 3-6 mm in diameter. They were incubated in medium with/without EGF for 22 h (IVMⅠ) and subsequently incubated hormone-free medium with/without EGF for 22 h (IVMⅡ). Nuclear maturation state was checked by aceto-orcein stain. Protein expression of EGFR, GM-130, Sec61β, and COPG2 were measured by immunofluorescence. In results, nuclear maturation of oocytes in EGF non-treated oocytes were significantly lower than EGF-treated groups at IVMⅠ or IVMⅡ stage (P<0.05), whereas maturational rate in EGF treatment groups at both of IVM stage was higher in among the all treatment groups (P<0.05). EGFR, GM-130, Sec61β and COPG2 were expressed in the cytoplasm of oocytes. Especially, GM-130 and EGFR were strongly expressed, but Sec61β and COPG2 were weakly expressed in cortical area of cytoplasm. The protein level of GM-130, Sec61β, and COPG2 were significantly higher in the EGF-treated groups (P<0.05). However EGFR was no difference between non EGF-treated groups and control. In conclusion, EGF plays an important role in the systems for oocyte maturation with endoplasmic reticulum and Golgi apparatus. In addition, the protein levels of Sec61β and COPG2 could be changed by EGF in the porcine oocytes during maturation.
Metformin is the most commonly prescribed anti-diabetic drug with relatively minor side effect. Substantial evidence has suggested that metformin is associated with decreased cancer risk and anticancer activity against diverse cancer cells. The tyrosine kinase inhibitor imatinib has shown powerful activity for treatment of chronic myeloid leukemia and also induces growth arrest and apoptosis in colorectal cancer cells. In this study, we tested the combination of imatinib and metformin against HCT15 colorectal cancer cells for effects on cell viability, cell cycle and autophagy. Our data show that metformin synergistically enhances the imatinib cytotoxicity in HCT15 cells as indicated by combination and drug reduction indices. We also demonstrate that the combination causes synergistic down-regulation of pERK, cell cycle arrest in S and G2/M phases via reduction of cyclin B1 level. Moreover, the combination resulted in autophagy induction as revealed by increased acidic vesicular organelles and cleaved form of LC3-II. Inhibition of autophagic process by chloroquine led to decreased cell viability, suggesting that induction of autophagy seems to play a cell protective role that may act against anticancer effects. In conclusion, our present data suggest that metformin in combination with imatinib might be a promising therapeutic option in colorectal cancer.
High-fructose corn syrup (HFCS) is widely used as sweetener, and its overconsumption is become a major health problem. In the present study, we used adult female rats and applied a 28 days HFCS feeding model to monitor the estrous cycle and changes in tissue weights and histology. Adult female rats were divided into three groups. Animals were fed with ad libitum normal chow and (1) 24 hours tap water (Control group), (2) 12 hours HFCS access during dark period and 12 hours tap water (12H group), and (3) 24 hours HFCS only access (24H group). Total exposure period was 28 days. There is no significant change in body weight between control and HFCS-fed animals. Both absolute and relative weights of ovary in 24H animals were significantly heavier than those in control or 12H animals. The absolute and relative weights of the kidney and liver in 24H groups were significantly heavier than those in control or 12H animals. The estrous cycles of the 24H animals were significantly longer. Histological analyses revealed that 24H ovaries were relatively bigger and possessed more corpus lutea than control ovaries. Uterine sections of 12H and 24H animals showed a well-developed stratum vasculare between inner and outer myometrial layers. The number of endometrial glands were decreased in 12H uteri, and recovered in 24H uteri compared to control. Numbers of convoluted tubule in distal region increased in 12H and 24H kidney samples. Liver specimens of 12H and 24H showed the increased number of fat containing vacuoles. In conclusion, our study demonstrated that HFCS treatment for 28 days could induce (1) changes in length of estrous cycle with extended estrous and diestrous stages, (2) altered ovarian and uterine histology, and (3) liver and renal lipid accumulation. These findings reveal the adverse effects of HFCS drinking on the reproductive function and lipid metabolism of female rats.
One of the reasons to causing blood coagulation in the tissue of xenografted organs was known to incompatibility of the blood coagulation and anti-coagulation regulatory system between TG pigs and primates. Thus, overexpression of human CD73 (hCD73) in the pig endothelial cells is considered as a method to reduce coagulopathy after pig-to-non-humanprimate xenotransplantation. This study was performed to produce and breed transgenic pigs expressing hCD73 for the studies immune rejection responses and could provide a successful application of xenotransplantation. The transgenic cells were constructed an hCD73 expression vector under control porcine Icam2 promoter (pIcam2-hCD73) and established donor cell lines expressing hCD73. The numbers of transferred reconstructed embryos were 127 ± 18.9. The pregnancy and delivery rate of surrogates were 8/18 (44%) and 3/18 (16%). The total number of delivered cloned pigs were 10 (2 alive, 7 mummy, and 1 died after birth). Among them, three live hCD73-pigs were successfully delivered by Caesarean section, but one was dead after birth. The two hCD73 TG cloned pigs had normal reproductive ability. They mated with wild type (WT) MGH (Massachusetts General Hospital) female sows and produced totally 16 piglets. Among them, 5 piglets were identified as hCD73 TG pigs. In conclusion, we successfully generated the hCD73 transgenic cloned pigs and produced their litters by natural mating. It can be possible to use a mate for the production of multiple transgenic pigs such as α-1,3-galactosyltransferase knock-out /hCD46 for xenotransplantation.
Human adult stem cells have widely been examined for their clinical application including their wound healing effect in vivo. To function as therapeutic cells, however, cells must represent the ability of directed migration in response to signals. This study aimed to investigate the mechanism of platelet-derived growth factor (PDGF)-induced migration of the human abdominal adipose-derived stem cells (hADSCs) in vitro. A general matrix metalloproteinase (MMP) inhibitor or a MMP2 inhibitor significantly inhibited the PDGF-induced migration. PDGF treatment exhibited greater mRNA level and denser protein level of MMP1. The conditioned medium of PDGF-treated cells showed a caseinolytic activity of MMP1. Transfection of cells with siRNA against MMP1 significantly inhibited MMP1 expression, its caseinolytic activity, and cell migration following PDGF treatment. Phosphatidylinositol 3-kinase (PI3K) inhibitor reduced the migration by about 50% without affecting ERK and MLC proteins. Rho-associated protein kinase inhibitor mostly abolished the migration and MLC proteins. The results suggest that PDGF might signal hADSCs through PI3K, and MMP1 activity could play an important role in this PDGF-induced migration in vitro.
A comparison of the growth, hematological values, fatty acids, and gonadal and growth hormonal changes of river puffer, Takifugu obscurus, tiger puffer, T. rubripes, their hybrids (river puffer × tiger puffer) and hybrid triploids was performed during 3 months of their early growth period. Several features were observed during these 3 months: hybrids showed the highest levels of specific growth rate, 1.48%; hybrid triploids showed the smallest change in viscera fat (P<0.05), but GSI was not significantly different among groups (P>0.05). Considering hematological parameters, hybrid triploids had increased mean corpuscular volume and mean corpuscular hemoglobin (P<0.05), but other parameters were not significantly different between groups (P>0.05). With respect to fatty acids, puffer fish, hybrids and hybrid triploids contained fatty acids such as SFAs, MUFAs, n-3 PUFAs and n-6 PUFAs. There were significantly different amounts of total fatty acids between groups (P<0.05), however, rates of changes in fatty acids did not differ significantly between groups (P>0.05). Gonadal hormone (estradiol and testosterone) changes in the river puffer and tiger puffer were significantly higher than that observed in hybrids and hybrid triploids. The hybrids and tiger puffers had higher amounts of growth hormone (thyroid stimulating hormone and thyroxine) than the hybrid triploids and river puffers (P<0.05).
The influence of triploidization on histological characteristics of retina, trunk kidney, liver and midgut tissue, and cell cycle of tail fin and gill tissue in far eastern catfish, Silurus asotus were analyzed. In the infertile triploid fish, the nucleus and/or cell size of secondary proximal tubule cells of trunk kidney, hepatocyte and midgut epithelium are much larger than those of the corresponding cells in the diploid fish (P<0.05). However, triploid tissue showed fewer number of outer nuclear layer in retina and nuclei in secondary proximal tubule of trunk kidney than those for diploid tissue. The mean percentages of the Gl-, the S- and the G2+M-phase fractions were 92.5%, 3.2% and 4.3% in tail fin tissue of diploid, and 93.4%, 2.6% and 4.0% in those of triploid, respectively. There were no significant differences in the percentages of each cell cycle fraction between diploid and triploid. The mean percentages of each phase fractions were 75.1%, 11.1% and 13.8% in gill tissue of diploid and 85.2%, 8.9% and 5.9% in those of triploid, respectively. The differences of cell cycle between tail fin tissue and gill tissue were statistically significant in diploid and triploid (P<0.05). Also, the differences between diploid and triploid were statistically significant in tail fin tissue and gill tissue (P<0.05). Cyclin D1 and cyclin E expressions were not significantly difference between gill tissue and tail fin tissue, and protein expressions of induced triploid were higher than those of diploid. Results from this study suggest that some characteristics in the triploid exhibiting larger cell and nucleus size with fewer number of cell than diploid can be used as an indicator in the identification of triploidization and ploidy level in far eastern catfish.
The influence of triploidization on histological characteristics of retina, trunk kidney, liver and midgut tissue, and cell cycle of tail fin and gill tissue in far eastern catfish, Silurus asotus were analyzed. In the infertile triploid fish, the nucleus and/or cell size of secondary proximal tubule cells of trunk kidney, hepatocyte and midgut epithelium are much larger than those of the corresponding cells in the diploid fish (P<0.05). However, triploid tissue showed fewer number of outer nuclear layer in retina and nuclei in secondary proximal tubule of trunk kidney than those for diploid tissue. The mean percentages of the Gl-, the S- and the G2+M-phase fractions were 92.5%, 3.2% and 4.3% in tail fin tissue of diploid, and 93.4%, 2.6% and 4.0% in those of triploid, respectively. There were no significant differences in the percentages of each cell cycle fraction between diploid and triploid. The mean percentages of each phase fractions were 75.1%, 11.1% and 13.8% in gill tissue of diploid and 85.2%, 8.9% and 5.9% in those of triploid, respectively. The differences of cell cycle between tail fin tissue and gill tissue were statistically significant in diploid and triploid (P<0.05). Also, the differences between diploid and triploid were statistically significant in tail fin tissue and gill tissue (P<0.05). Cyclin D1 and cyclin E expressions were not significantly difference between gill tissue and tail fin tissue, and protein expressions of induced triploid were higher than those of diploid. Results from this study suggest that some characteristics in the triploid exhibiting larger cell and nucleus size with fewer number of cell than diploid can be used as an indicator in the identification of triploidization and ploidy level in far eastern catfish.
The aim of this study was to determine the effect of additional alpha-linolenic acid (ALA) supplementation during in vitro maturation (IVM) and culture (IVC) on nucleic maturation and embryo development of pigs. Cumulus-oocyte complexes (COCs) were incubated in IVM medium containing different concentration of ALA (25, 50 and 100 μM) for 44 h. After in vitro maturation, nuclear maturation of oocytes were evaluated by aceto-orcein stain. Mature oocytes with 50 μM ALA were fertilized and cultured in IVC medium with ALA (25, 50 and 100 μM) during early-embryogenesis (48 hours after fertilization). Then, embryos were cultured with 25 μM ALA during early embryogenesis and/or late embryogenesis (120 hours after early-embryogenesis). In results, oocyte maturation were significantly increased by 50 μM ALA treatment groups compared with control groups (p<0.05). Treatment of 25 μM ALA during early-embryogenesis enhanced cleavage rate of embryo compared with other groups (p<0.05), whereas formation and total cell number of blastocyst had no significant difference. Similarly, cleavage rate of embryos were increased by 25 μM ALA supplement during early- or late-embryogenesis than ALA treatment both stage of embryogenesis (p<0.05), but did not influence to blastocyst formation. Interestingly, total cell number of blastocyst were enhanced in ALA treatment group during early-embryogenesis. These findings indicated that ALA supplement enhance the nuclear maturation of oocyte and embryo development, however, excessive ALA could negatively influence. Therefore, we suggest that ALA is used for improvement of in vitro production of mammalian embryo and further study regarding with functional mechanism of ALA is needed.
Bitter melon (Momordica charantia, MC) has been used in traditional Korean medicine in treating diabetes. In addition, some reports were emerged, showing the antifertility activities of MC in mammals. We investigated the effects of ethanolic MC extract on the reproductive activity of golden hamsters whose spermatogenetic capacity is controlled by their photoperiods. The animals were divided into 4 groups: long photoperiod (LP) control, short photoperiod (SP) control, and LP animals treated with MC. The animals were orally ingested with low (0.03 g/kg) or high (0.15 g/kg) concentrations of the ethanolic extracts for 8 weeks on the daily basis. The control animals received the vehicle. The animals were then mated with age-matched females, experienced pregnancy. As results, the LP control animals showed active large testes but SP control animals displayed remarkably reduced testes. The animals treated with both concentrations of MC extracts demonstrated large testes, indicating fertile activity as animals in LP. LP control animals had litters as expected, but SP controls had no litters at all. MC extract showed the same results as LP animals in generating offsprings. These results suggest that the MC extract does not change the photoperiodic influence on reproductive activity of male golden hamsters.
This study investigated the effect of different photoperiods (14L: 10D, 12L:12D and 10L:14D) on the gonadal development and GtH mRNA expression in the pituitary of damselfish. The results showed that gonadosomatic index (GSI) was significantly lower in shot photoperiod (10L:14D), in comparison with other photoperiodic group during the spawning season. After 60 days treatment, histological analysis of gonad tissue showed that the gonad of 10L:14D and 12L: 12D treatment groups were resting phase with spermatogonia and perinucleolus stage oocytes but the gonad of 14L:10D treatment group was still ripe phase with spermatozoa and mature stage oocyte. The FSHβ and LHβ mRNA expression in pituitary drastically decreased shot photoperiod treatment from July (spawning period). These results suggest that photoperiod is considered to be the most effective environmental factor in controlling the reproductive cycle of damselfish.