X chromosome inactivation (XCI) is a process that enables mammalian females to ensure the dosage compensation for X-linked genes. Investigating the mechanism of XCI might provide deeper understandings of chromosomal silencing, epigenetic regulation of gene expressions, and even the course of evolution. Studies on mammalian XCI conducted with mice have revealed many fundamental findings on XCI. However, difference of murine and human XCI necessitates the further investigation in human XCI. Recent success in reprogramming of differentiated cells into pluripotent stem cells showed the reversibility of XCI in vitro, X chromosome reactivation (XCR), which provides another tool to study the change in X chromosome status. This review summarizes the current knowledge of XCI during early embryonic development and describes recent achievements in studies of XCI in reprogramming process.
Egg activation is a crucial step that initiates embryo development upon breaking the meiotic arrest. In mammalian, egg activation is accomplished by fusion with sperm, which induces the repeated intracellular - increases ( oscillation). Researches in mammals support the view of the oscillation and egg activation is triggered by a protein factor from sperm that causes release from endoplasmic reticulum, intracellular store, by persistently activation of phosphoinositide pathway. It represents that the sperm factor generates production of inositol trisphosphate (). Recently a sperm specific form of phospholipase C zeta, referred to as PLCZ was identified. In this paper, we confer the evidence that PLCZ represent the sperm factor that induces oscillation and egg activation and discuss the correlation of PLCZ and infertility.
Ethanol treatment during the brain growth spurt period has been known to induce the death of Purkinje cells. The underlying molecular mechanisms and the role of reactive oxygen species (ROS) in triggering ethanol-induced Purkinje cell death are, however, largely unresolved. We undertook TUNEL staining, western blotting assay and immunohistochemistry for the cleaved forms of caspase-3 and -9, with calbindin D28K double immunostaining to identify apoptotic Purkinje cells. The possibility of ROS-induced Purkinje cell death was immunohistochemically determined by using anti-8-hydroxy-2'deoxyguanosine (8-OHdG), a specific cellular marker for oxidative damage. The results show that Purkinje cell death of PD 5 rat cerebellum following ethanol administration is mediated by the activation of caspase-3 and -9. However, unexpectedly, TUNEL staining did not reveal any positive Purkinje cells while there were some TUNEL-positive cells in the internal and external granular layer. 8-OHdG was detected in the Purkinje cell layers at 8 h, peaked at 12-24 h, but not at 30 h post-ethanol treatment. No 8-0HdG immunoreactive cells were detected in the internal and external granular layer. The lobule specific 8-OHdG staining patterns following ethanol exposure are consistent with that of ethanol-induced Purkinje cell loss. Thus, we suggest that ethanol-induced Purkinje cell death may not occur by the classical apoptotic pathway and oxidative damage is involved in ethanol-induced Purkinje cell death in the developing cerebellum.
Endocytosis of the Notch ligand, DeltaD, by mind bomb1 is indispensable for activation of Notch in cell fate determination, proliferation, and differentiation during zebrafish neurogenesis. Loss of mind bomb1 activity as an E3 Ubiquitin ligase causes the accumulation of deltaD at the plasma membrane and results in the ectopic neurogenic phenotype by activation of Notch in early zebrafish embryogenesis. However, the regulatory mechanism of deltaD during neurogenesis is not identified yet. This study aims to analyze the pathway of mib1 and deltaD after endocytosis in vivo during zebrafish embryogenesis. Mind bomb1 and deltaD are co-localized into autophagosome and mutant form of mind bomb1 fails to cargo deltaD into autophagosomes. These findings suggest that mind bomb I mediates deltaD regulation by autophagy in an ubiquitin-dependent manner during zebrafish embryogenesis.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants derived from incomplete combustion of carbons and crude oil. In this study, we investigated the effects of benzo[a]pyrene (B[a]P), a representative PAHs on in vitro sex steroid hormone production and germinal vesicle breakdown (GVBD) using isolated oocytes of longchin goby (Chasmichthys dolichognathus) and chameleon goby (Tridentiger trigonocephalus). Oocytes in diameters of 0.8-0.9 (end vitellogenic stage) and 0.9-1.0 mm (germinal vesicle migratory stage) from longchin goby and 0.5 mm (fully vitellogenic stage) from chameleon goby were used. In GVBD assay, B[a]P at 10 nM stimulated GVBD in the oocytes of 0.8-0.9 mm from longchin goby. B[a]P at 1 nM stimulated GVBD in the oocytes with diameter 0.5 mm from chameleon goby. In steroid production from oocytes of longchin goby, B[a]P at 100 nM decreased testosterone (T) production, B[a]P at 1,000 nM increased estraiol-17 (J (E2) production and 10 and 100 nM increased -dihydroxy-4-pregnen-3-one () production in the oocytes with diameter 0.8-0.9 mm. B[a]P at 1,000 nM increased E2 production, 100 and 1,000 nM increased production in the oocytes with diameter 0.9-1.0 mm. In steroid production of oocytes from chameleon goby, B[a]P at 1,000 nM increased production. B[a]P at 10 nM increased production. In the ratio of to T (/T), B[a]P at 100 and 1,000 nM increased /T in the oocytes of longchin goby. B[a]P at 100 nM also increased /T in the oocytes of chameleon goby. Taken together, these results suggest that B[a]P have not only weak estrogenic effects but progestogenic effects on oocyte maturation.
The objective of this study was to elucidate the dynamics of microtubules in post-ovulatory aging in vivo and in vitro of mouse oocytes. The fresh ovulated oocytes were obtained from oviducts of superovulated female ICR mice at 16 hours after hCG injection. The post-ovulatory aged oocytes were collected at 24 and 48 hours after hCG injection from in vivo and in vitro, respectively. Immunocytochemistry was performed on -tubulin and acetylated -tubulin. The microtubules were localized in the spindle assembly, which was barrel-shaped or slightly pointed at its poles and located peripherally in the fresh ovulated oocytes. The frequency of misaligned metaphase chromosomes were significantly increased in post-ovulatory aged oocytes after 48 hours of hCG injection. The spindle length and width of post-ovulatory aged oocytes were significantly different from those of fresh ovulated oocytes, respectively. The staining intensity of acetylated -tubulin showed stronger in post-ovulatory aged oocytes than that in the fresh ovulated oocytes. In the aged oocytes, the spindles had moved towards the center of the oocytes from their original peripheral position and elongated, compared with the fresh ovulated oocytes. Microtubule organizing centers were formed and observed in the cytoplasm of the aged oocytes. On the contrary, it was not observed in the fresh ovulated oocytes. The alteration of spindle formation and chromosomes alignment substantiates the poor development and the increase of disorders from the post-ovulatory aged oocytes. It might be important to fertilize on time in ovulated oocytes for the developmental competence of embryos with normal karyotypes.
Spermatogenesis and taxonomic values of mature sperm morphology of in male Septifer (Mytilisepta) virgatus were investigated by transmission electron microscope observations. The morphologies of the sperm nucleus and the acrosome of this species are the cylinder shape and cone shape, respectively. Spermatozoa are approximately 45-50 in length including a sperm nucleus (about 1.26 long), an acrosome (about 0.99 long), and tail flagellum (about 45-47 ). Several electron-dense proacrosomal vesicles become later the definitive acrosomal vesicle by the fusion of several Golgi-derived vesicles. The acrosome of this species has two regions of differing electron density: there is a thin, outer electron-dense opaque region (part) at the anterior end, behind which is a thicker, more electron-lucent region (part). In genus Septifer in Mytilidae, an axial rod does not find and also a mid-central line hole does not appear in the sperm nucleus. However, in genus Mytilus in Mytilidae, in subclass Pteriomorphia, an axial rod and a mid-central line hole appeared in the sperm nucleus. These morphological differences of the acrosome and sperm nucleus between the genuses Septifer and Mytilus can be used for phylogenetic and taxonomic analyses as a taxonomic key or a significant tool. The number of mitochondria in the midpiece of the sperm of this species are five, as seen in subclass Pteriomorphia.
Nesfatin-1/NUCB2, which is secreted from the brain, is known to control appetite and energy metabolism. Recent studies have been shown that nesfatin-1/NUCB2 was expressed not only in the brain, but it was also expressed in the gastric organs and adipose tissue. However, little is known about the expression of nesfatin-1/NUCB2 in the male reproductive system. Therefore, we examined whether the nesfatin-1/NUCB2 and its binding site exists in the male reproductive organs. Nesfatin-1/NUCB2 mRNA and protein were detected in the mouse testis and epididymis by PCR and Western blot analysis. As a result of the immunohistochemistry staining, the nesfatin-1 protein was localized at the interstitial cells and Leydig cells in the testis. Nesfatin-1 binding sites were also displayed at boundary cells in the tunica albuginea. Furthermore, in order to examine if the expression of nesfatin-1/NUCB2 mRNA in the testis and epididymis were affected by gonadotropin, its mRNA expression was analyzed after PMSG administration into mice. NUCB2 mRNA expression levels were increased in both of the testis and epididymis after PMSG administration. These results demonstrated for the first time that nesfatin-1 and its binding site were expressed in the mouse testis and epididymis. In addition, nesfatin-1/NUCB2 mRNA expression was controlled by gonadotropin, suggesting a possible role of nesfatin-1 in the male reproductive organs as a local regulator. Due to this, further study is needed to elucidate the functions of nesfatin-1 on the male reproductive system.
Gonadal development and reproductive cycle of Aplysia kurodai inhabiting the coastal waters of Jeju Island, Korea were investigated based on monthly changes of gonadosomatic index, gametogenesis, and developmental phases of ovotestis. A. kurodai was simultaneous hermaphrodite; the ovotestis generally embedded in the posterior dorsal surface of the brownish digestive gland. The ovotestis is composed of a large number of follicles, and both oocytes and sperm are produced in the same follicles. In the sampling periods, the adult A. kurodai population have characteristic of seasonal pattern present during only 10 months. The reproductive cycle can be grouped into the following successive stages in the ovary: inactive (December to February), active (December to April), mature and spawning (April to September). The gonadal development of A. kurodai coincided with rising temperature, and spawning occurred from April to September, when the temperature was high. The histological observations of the ovotestis suggested that this species have a single spawning season that extend over six months.
It is well known that adipose tissue or body fat has been proved as a crucial component of brain-peripheral axis which can modulate the activities of reproductive hormonal axis in female mammals including rodents and human. Concerning the male reproduction, however, the role of adipose tissue has not been thoroughly studied. The present study was carried out to elucidate the effect of a high-fat (HF) diet on the reproductive system of postpubertal male rats. The HF diet (45% energy from fat, HF group) was applied to male rats from week 8 after birth for 4 weeks. The blood glucose levels, body and tissue weights were measured. Histological studies were performed to assess the structural alterations in the reproductive tissues. To determine the transcriptional changes of reproductive hormone-related genes in hypothalamus and pituitary, total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Body weights (p<0.01) and blood glucose levels (p<0.01) of HF group were significantly higher than those of control animals. Similarly, the weights of epididymis (p<0.05), prostate (p<0.01), seminal vesicle (p<0.01) in HF group were higher than control levels. The weights of testis were not changed. The weights of kidney (p<0.001) and spleen (p<0.01) were significantly higher than control levels while the adrenal and pancreas weights were not changed. There were only slight alterations in the microstructures of accessory sex organs; the shape of luminal epithelial cells in epididymis from HF group were relatively thicker and bigger than those from control animals. In the semi-quantitative RT-PCR studies, the mRNA levels of hypothalamic GnRH (p<0.05) in HF group were significantly higher than those from the control animals. The mRNA levels of kisspeptin in HF group tend to be higher than control levels, the difference was not significant. Unlike the hypothalamic GnRH expression, the mRNA levels of pituitary and were significantly decreased in HF group (p<0.05). The present study indicated that the 4-weeks feeding HF diet during the postpubertal period can alter the hypothalamus-pituitary (H-P) neuroendocrine reproductive system These results suggest that the increased body fat and the altered leptin input might disturb the H-P reproductive hormonal activities in male rats, and the changed activities seem to be responsible for the changes of tissue weights in accessory sex organs.