GnRH (gonadotropin-releasing hormone) is a supreme hormone regulating reproductive activity in most animals. The sequences of amino acid and nucleic acid of GnRH reported up to now are examined from the evolutionary framework of Chordata. All identified GnRH are classified into GnRH1, GnRH2, or GnRH3. In all three forms of GnRH both N-terminal and C-terminal are conserved, which allows for effective binding to their receptors. The three amino acids in the middle of GnRH1 sequence have altered diversely from the primitive Chordata, which is indicative of the adaptation process to the ambient environment. GnRH2 and GnRH3 sequences are well conserved. There are more diverse modifications in the nucleic acids than in amino acid sequence of GnRH1. These variations can result from meiosis, mutation, or epigenetics and indicate that GnRH is the product of natural selection.
Patients with type II diabetes mellitus are more susceptible to colorectal cancer (CRC) incidence than non-diabetics. The anti-diabetic drug metformin is most commonly prescribed for the treatment of this disease and has recently shown antitumor effect in preclinical studies. The aberrant mutational activation in the components of RAS/RAF/MEK/ERK and PI3K/AKT/mTOR signaling pathway is very frequently observed in CRC. We previously reported that metformin inhibits the phosphorylation of ERK and BEZ235, a dual inhibitor of PI3K and mTOR, has anti-tumor activity against HCT15 CRC cells harboring mutations of KRAS and PIK3CA. Therefore, we hypothesized that simultaneous inhibition of two pathways by combining metformin with BEZ235 could be more effective in the suppression of proliferation than single agent treatment in HCT15 CRC cells. Here, we investigated the combinatory effect of metformin and BEZ235 on the cell survival in HCT15 CRC cells. Our study shows that both of the two signaling pathways can be blocked by this combinational strategy: metformin suppressed both pathways by inhibiting the phosphorylation of ERK, 4E-BP1 and S6, and BEZ235 suppressed PI3K/AKT/ mTOR pathway by reducing the phosphorylation of 4E-BP1 and S6. This combination treatment synergistically reduced cell viability. The combination index (CI) values ranged from 0.44 to 0.88, indicating synergism for the combination. These results offer a preclinical rationale for the potential therapeutic option for the treatment of CRC.
The large extracellular domain of glycoprotein hormone receptors is a unique feature within the G protein-coupled receptors (GPCRs) family. After interaction with the hormone, the receptor becomes coupled to Gs, which, in turn stimulates adenylyl cyclase and the production of cAMP. Potential phosphorylation sites exist in the C-terminal region of GPCRs. The experiments described herein represent attempts to determine the functions of the eel follicle-stimulating hormone receptor (eelFSHR). We constructed a mutant of eelFSHR, in which the C-terminal cytoplasmic tail was truncated at residue 614 (eelFSHR-t614). The eelFSHR-t614 lacked all potential phosphorylation sites present in the C-terminal region of eelFSHR. In order to obtain the eelFSHR ligand, we produced recombinant follicle-stimulating hormone (rec-eelFSHβ/α) in the CHO-suspension cells. The expression level was 2-3 times higher than that of the transient expression of eelFSH in attached CHO-K1 cells. The molecular weight of the rec-eelFSHβ/α protein was identified to be approximately 34 kDa. The cells expressing eelFSHR-t614 showed an increase in agonist-induced cAMP responsiveness. The maximal cAMP responses of cells expressing eelFSHR-t614 were lower than those of cells expressing eelFSHR-wild type (eelFSHR-WT). The EC50 following C-terminal deletion in CHO-K1 cells was approximately 60.4% of that of eelFSHR-WT. The maximal response in eelFSHR-t614 cells was also drastically lower than that of eelFSHR-WT. We also found similar results in PathHunter Parental cells expressing β-arrestin. Thus, these data provide evidence that the truncation of the C-terminal cytoplasmic tail phosphorylation sites in the eelFSHR greatly decreased cAMP responsiveness and maximal response in both CHO-K1 cells and Path-Hunter Parental cells expressing β-arrestin.
This study aimed to investigate changes in the activity and mRNA expression of plasminogen activators (PAs) induced by 17β-estradiol (E₂), human chorionic gonadotropin (hCG), and interleukin-1β (IL-1β) in porcine endometrial cells. Endometrial cells were isolated from the epithelium and cultured to 80% confluence. They were then treated for 24 h with E₂ (0.2, 2, 20, and 200 ng/mL), IL-1β (0.1, 1, 10, and 100 ng/mL), and hCG (0.5, 1, 1.5 and 2 IU/mL). mRNA expressions of urokinase-type (uPA) and tissue-type (tPA) PAs were analyzed using reverse transcription PCR, and activities were measured using a PA activity assay. mRNA expressions of uPA and tPA increased with E₂ treatment; however, this was not significant. Similarly, treatment with hCG did not influence the mRNA expressions of PAs. Interestingly, treatment with 0.1 ng/mL IL-1β significantly reduced the mRNA expression of uPA, but did not affect that of tPA. Treatment with 2, 20, and 200 ng/mL E₂ increased PA activity compared with the control group; treatment with 0.1 and 1 ng/mL IL-1β significantly increased PA activity compared with the other IL-1β treatment groups, whereas treatment with 10 and 100 ng/mL IL-1β decreased. Treatment with 2 IU/mL hCG increased PA activity compared with the other treatment groups, although there were no significant differences between the hCG and control groups. In conclusion, the activity and mRNA expression of PAs were differently regulat-ed by the hormone/cytokine and its concentration in porcine endometrial cells. Therefore, understanding PA regulatory mechanisms may help to improve the reproductive potential of domestic animals.
The aim of study is to contribute to this knowledge-base by investigating the respiratory function, the metabolic rate and the difference of physiological responses un-der low water temperature (20℃→15℃) stress be-tween diploid and triploid far eastern catfish, Silurus asotus. During the 48 hrs of water temperature stress exposure time, the respiratory frequencies, CO₂ and NH₄+ concentrations of diploid had higher values than those of triploid (p<0.05). However, pH of triploid was higher than those of diploid (p<0.05), and oxygen consumption rate was not different between diploid and triploid (p>0.05). The level of plasma cortisol and plasma glucose of triploid was lower than those of the diploid (p<0.05). However, in case of lactic acid, there were not significant between triploid and diploid (p>0.05). These results suggest that diploid was more sensitive for low water temperature stress response than triploid in this species.
In order to examine the effects of four different light spectra (white, red, green, and blue) on the oocyte maturation, the change of reproductive parameters, via brain-pituitary-gonad (BPG) axis in grass puffer, were investigated. After exposure four different light spectra for 7 weeks, the abundance of gonadotropin-releasing hormone (GnRH) mRNA which is a type of seabream (sbGnRH) and two different subunit of gonadotropin hormones mRNAs, follicle-stimulating hormone (fshβ) mRNA and luteinizing hormone (lhβ) mRNA, were analyzed in the brain and pituitary. Histological analysis showed that the mature oocyte ratio in the green spectrum was higher than other light spectra-exposed groups. Gonadosomatic index (GSI) and oocyte developmental stage were also investigated in the gonad based on histological observations. GSI value with the presence of yolk stage oocytes was significantly increased in the green spectrum-exposed group when compared to that of the other light-exposed groups (white, red, and blue) (p˂0.05). The abundances of sbGnRH mRNA and fshβ mRNA in the green spectrum-exposed group were also significant higher than those of the other light spectra-exposed groups (p˂0.05). These results indicate that the maturation of oocyte in grass puffer can be accelerated by exposure to the spectrum of green. To better understand the molecular mechanism for the maturation of oocyte in grass puffer, further study examining the relationship between oocyte development and its related genes is required.
The morphometric truss characteristics and classical dimensions of the marine medaka, Oryzias dancena, that might distinguish diploid and triploid fish were examined. Significant differences in all the classical and truss dimensions of the diploid and triploid fish were observed in both sexes (p<0.01). All the dimensions of the triploid fish were greater than those of the diploid fish. The triploid marine medaka shows sexual dimorphism in these characters, and the sexual dimorphism of the triploid marine medaka is similar to that of the diploid marine medaka. Thus, when their classical dimension and truss dimension was measured, the growth of triploid marine medaka is faster than that of the diploid fish, and it displays clear sexual dimorphism, with male fish having longer dorsal and anal fins than female fish.
The author undertook PCR-founded genetic platform to investigate the hierarchical dendrogram of Euclidean genetic distances of one razor clam population, particularly for Solen corneus, which was further associated with those of the other clam population, by engaging with the precisely designed oligonucleotide primer sets. Seven oligonucleotides primers were used producing a total of 639 counted bands in population A and 595 in population B, respectively, ranging in size of DNA fragments from larger than approximately 50 bp to less than 1,100 bp. Their primers generated 39 specific fragments (6.10%) in population A and 47 (7.90%) in population B, respectively Comparatively, individuals of one razor clam population were fairly related to that of the other clam population, as shown in the hierarchical dendrogram of Euclidean genetic distances. The analysis of genetic variation between razor clam populations could offer important statistics for fisheries and mariculture. Generally the results showed specific and/or conserved genetic loci between razor clam populations. Specific markers established by the author will be valuable for the genetic analysis, species protection and increase of razor clam individuals in coastal region of the Korean Peninsula.
Although trisomy 16 is commonly detected in spontaneous abortions and accounts for over 30% of cases of autosomal trisomy detected after spontaneous abortion, trisomy 16 mosaicism is rarely detected by amniocentesis in the second trimester. Here, we report a case of level III trisomy 16 mosaicism (47,XX,+16[8]/46,XX[31]) diagnosed by cytogenetic analysis of independently cultured amniotic fluid cells. The female baby was delivered at full term with low birth weight and intrauterine growth retardation, and interestingly, her karyotype was normal (46,XX). Given the difficulty in predicting the outcomes of fetuses with this mosaicism, it is recommended to inform the possibility of mosaicisms including this trisomy 16 mosaicism during prenatal genetic diagnosis and genetic counseling for parents.