Living beings are surrounded by various changes exhibiting periodical rhythms in environment. The environmental changes are imprinted in organisms in various pattern. The phenomena are believed to match the external signal with organisms in order to increase their survival rate. The signals are categorized into circadian, seasonal, and annual cycles. Among the cycles, the circadian rhythm is regarded as the most important factor because its periodicity is in harmony with the levels of melatonin secreted from pineal gland. Melatonin is produced by the absence of light and its presence displays darkness. Melatonin plays various roles in creatures. Therefore, this review is to introduce the diverse potential ability of melatonin in manifold aspects in living organism.
Neural stem cells are found in adult mammalian brain regions including the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ). In addition to these two regions, other neurogenic regions are often reported in many species. Recently, the subcallosal zone (SCZ) has been identified as a novel neurogenic region where new neuroblasts are spontaneously generated and then, by Bax-dependent apoptosis, eliminated. However, the development of SCZ in the postnatal brain is not yet fully explored. The present study investigated the precise location and amount of neuroblasts in the developing brain. To estimate the importance of programmed cell death (PCD) for SCZ histogenesis, SCZ development in the Bax-knockout (KO) mouse was examined. Interestingly, an accumulation of extra neurons with synaptic fibers in the SCZ of Bax-KO mice was observed. Indeed, Bax-KO mice exhibited enhanced startle response to loud acoustic stimuli and reduced anxiety level. Considering the prevention of PCD in the SCZ leads to sensory-motor gating dysfunction in the Bax-KO mice, active elimination of SCZ neuroblasts may promote optimal brain function.
In this study, we measured the morphometric and histological changes in the cyprinid loach, Misgurnus anguillicaudatus, during the early period of growth. Eyes, yolk length, yolk height, and yolk volume of the larva decreased for 16 days post hatching (DPH) (P<0.05). During 60 DPH (P>0.05), the most anterior extension of the head × the posterior end of the supraoccipital, the most anterior extension of the head × the origin of the dorsal fin, the most anterior extension of the head × the origin of the pectoral fin, the posterior end of the supraoccipital × the origin of the pelvic fin, and the origin of the dorsal fin × the ventral origin of the caudal fin gradually decreased, whereas the most anterior extension of the head × the dorsal origin of the caudal fin, the origin of the dorsal fin × the origin of the anal fin, the origin of the dorsal fin × the origin of the pectoral fin, and the insertion of the dorsal fin × the origin of the pelvic fin gradually increased (P<0.05). In the cyprinid loach, the retina is composed of six layers: the epithelial layer, ganglion cell layer, inner nuclear layer, inner plexiform layer, outer limiting membrane, and rod and cone layer (RCL). After hatching, part of the RCL gradually increased in density. The kidney and midgut epithelium were already formed in the cyprinid loach just after hatching and grew gradually in subsequent days.
Genomic DNAs were extracted from the turtle leg (Pollicipes mitella, 1798) population of Tongyeong, Yeosu and Manjaedo located in the southern sea of Korea. The turtle leg population from Tongyeong (0.929) exhibited higher bandsharing values than did turtle leg from Manjaedo (0.852). The higher fragment sizes (>1,200 bp) are much more observed in the Yeosu population. The number of unique loci to each population and number of shared loci by the three populations, generated by PCR using 7 primers in the turtle leg (P. mitella) population of Tongyeong, Yeosu and Manjaedo. Genetic distances among different individuals of the Tongyeong population of the turtle leg (lane 1-07), Yeosu population of the turtle leg (lane 08-14) and Manjaedo population of the turtle leg (lane 15-21), respectively, were generated using the CLASSIFICATION option in Systat version 10 according to the bandsharing values and similarity matrix. The dendrogram, obtained by the seven decamer primers, indicated three genetic clusters: cluster 1 (TONGYEONG 01-TONGYEONG 07), cluster 2 (YEOSU 08-YEOSU 14), and cluster 3 (MANJEDO 15-MANJEDO 21). Tongyeong population could be evidently discriminated with the other two Yeosu and Manjaedo populations among three populations. The longest genetic distance (0.305) was found to exist between individuals’ no. 02 of the Tongyeong population and no. 13 of the Yeosu population. It seems to the authors that this is a result of a high degree of inbreeding in narrow region for a long while.
This study was performed to investigate the effect of peroxisome proliferators activated receptor-r (PPAR-r) ligand, pioglitazone, on production of regulated upon activation normal T-cell expressed and secreted (RANTES) and in vitro fertilization (IVF) outcome in infertile patients with endometriosis. Sixty-four infertile patients with stage III or IV endometriosis undergoing IVF were randomly allocated to the study or the control group. The long protocol of GnRH agonist (GnRH-a) was used for controlled ovarian stimulation (COS) in all patients. Patients in the study group were treated with pioglitazone at a dose of 15 ㎎/day orally from the starting day of GnRH-a treatment to the day of hCG injection. Blood samples were drawn for serologic assay of RANTES on the first day of GnRH-a treatment and the day of hCG injection. There were no differences between the study and control groups in patient characteristics. There were also no differences between the two groups in COS duration, and the numbers of retrieved oocytes, fertilized oocytes and embryos transferred. The clinical pregnancy rate per cycle was higher in the study group, but this difference was not statistically significant. However, embryo implantation rate was significantly higher in the study group of 12.5% compared with 8.6% in the control group (P<0.05). The serum RANTES levels after pioglitazone treatment were significantly lower than those before pioglitazone treatmen in the study group (P<0.05). Our data suggest that pioglitazone treatment can suppress RANTES production and improve the embryo implantation rate in patients with endometriosis undergoing IVF.
Recently, the RNA/DNA-binding protein FUS, Fused in sarcoma, was shown to play a role in growth, differentiation, and morphogenesis in vertebrates. Because little is known about Fus, we investigated its expression pattern in murine tooth development. In situ hybridization of mouse mandibles at specific developmental stages was performed with a DIG-labeled RNA probe. During early tooth development, Fus was detected in the dental epithelium and dental mesenchyme at 11 days postcoitum (dpc) and 12 dpc. From 14 dpc, Fus was strongly expressed in the dental papilla and the cervical loop of the dental epithelium. At postnatal day 4 (PN4), Fus expression was observed in the odontoblasts, ameloblasts, the proliferation zone of the pulp, and the cervical loop. At PN14, the expression pattern of Fus was found to be maintained in the odontoblasts and the proliferation zone of the pulp. Furthermore, Fus expression was especially strong in the Hertwig’s epithelial root sheath (HERS). Therefore, this study suggests that Fus may play a role in the HERS during root development.
Cathepsins are members of the multigene family of lysosomal cysteine proteinases and have regulated function in several life processes. The potential role of cathepsin F cysteine gene was expected as protease in the yolk processing mechanism during early developmental stage, but expression analysis was unknown after fertilization. The alignment analysis showed that amino acid sequence of cathepsin F from olive flounder liver expressed sequence tag (EST) homologous to cathepsin F of other known cathepsin F sequences with 87-98% identity. In this study, we examined the gene expression analysis of cathepsin F in various tissues at variety age flounder. Tissue distribution of the cathepsin F mRNA has been shown to be ubiquitous and constitutive pattern regardless of age in each group, although derived from cDNA library using liver sample. The mRNA level of cathepsin F more increased as developmental proceed during embryogenesis and early developmental stage, especially increased in the blastula, hatching stage and 3 days post hatching (dph). As a result, it may suggest that the proteolysis of yolk proteins (YPs) has been implicated as a mechanism for nutrient supply during early larval stages in olive flounder.
Olive flounder (Paralichthys olivaceus) is one of the commercial important flatfish species in Korea. The ocular signal transduction pathway is important in newly hatched flounders because it is closely involved in the initial feeding phase thus essential for survival during the juvenile period. However, the study of gene expression during ocular development is incomplete in olive flounder. Therefore we examined the expression analysis of specifically induced genes during the development of the visual system in newly hatched flounders. We searched ocular development-involved gene in the database of expressed sequence tags (ESTs) from olive flounder eye and this gene similar to arrestin with a partial sequence homology. Microscopic observation of retinal formation corresponded with the time of expression of the arrestin gene in the developmental stage. These results suggest that arrestin plays a vital role in the visual signal transduction pathway of the retina during ocular development. The expression of arrestin was strong in the ocular system during the entirety of the development stages. Our findings regarding arrestin have important implications with respect to its biological role and evolution of G-protein coupled receptor (GPCR) signaling in olive flounder. Further studies are required on the GPCR-mediated signaling pathway and to decipher the functional role of arrestin.
To effects of sex maturation in olive flounder by regulating long photoperiod, gonadal development and GTH mRNA expression in the pituitary were investigated. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from September 2011 to March 2012. The results showed that natural photoperiodic group showed a higher gonadosomatic index (GSI) than long photoperiodic group during the spawning season (March 2012). The histological analysis of ovarian tissue showed that natural photoperiod group of ovaries contained vitellogenic oocytes, but long photoperiod group of ovaries mainly contained perinucleolus staged oocyte and oil-drop staged oocytes. The FSH mRNA of olive flounder, under natural photoperiod group, showed a significantly higher expression but no significant difference under long photoperiod group. The LHβ mRNA showed a significantly higher expression only under natural photoperiod group. These results may suggest that long photoperiodic information regulates secretion of pituitary FSH and LH and maintain early growing stage of gonadal development in this species.
The gonadsomatic index (GSI) of mottled skate was the highest in April, GSI and HSI showed a reverse phase for its reproductive cycle. The fish had one pair of egg capsules, having 1 to 7 fertilized eggs, and spawned all the year round. When surveying the reproductive characteristics of females over 63 ㎝ in disc width, we found the spawning peak was between April to June, and the appearance ratio of egg capsules was the highest in May (32.1%). The eggs were hatched at 8℃, 13℃, 18℃, water temperature (12.8 to 24.2℃), and the best hatching temperature was 18℃. The number of fish hatched was 4 to 5 fish/egg capsules, and the hatching rate was 100%. The sex ratios of hatching larvae were 45.5% female and 54.5% male. Therefore this study will provide fundamental data and information for artificial reproduction of the mottled skate.
Morphometric changes in the Ussurian bullhead, Leiocassis ussuriensis, and the Korean bullhead, Pseudobagrus fulvidraco, were observed during the early period of growth. Yolk length, yolk height, and yolk volume in the two species decreased within 9 days post-hatching (DPH) (p<0.05). The body lengths and body heights of both species increased gradually to 150 and 130 DPH, respectively (p<0.05). The horizontal distance between the anteriormost extension of the head and the anterior insertion of the pectoral fin, the anteriormost extension of the head × the verticality position of the anterior insertion of the primary dorsal fin rays, and the anterior insertion of the primary dorsal fin × the anterior insertion of the pectoral fin were greater in the Korean bullhead than in the Ussurian bullhead (p<0.05). However, the relative sizes of the head region, pectoral fin, ventral fin, and anal fin were greater in the Ussurian bullhead than in the Korean bullhead (p<0.05), and relative body depth and the size of the outer-mandible barbel were greater in the Korean bullhead than in the Ussurian bullhead (p<0.05). The growth curves of the morphometric characteristics of both species were divided into three types.
This study was performed to evaluate the effects of fibroblast co-culture on in vitro maturation (IVM) of prepubertal mouse preantral follicles. The intact preantral follicles were obtained from the ovaries of 12-14 day old mice and these were cultured individually in α-minimal essential medium (α-MEM) supplemented with 5% fetal bovine serum (FBS), 100 mIU/㎖ recombinant follicle stimulating hormone (rFSH), 1% insulin-transferrin-selenium, 100 μg/ml penicillin and 50 ㎍/㎖ streptomycin as base medium for 12 days. A total of 200 follicles were cultured in base medium co-cultured with mouse embryonic fibroblast (MEF) (MEF group) (n=100) or only base medium as control group (n=100). Survival rate of follicles on day 12 of culture were significantly higher in the MEF group of 90.0%, compared with 77.0% of the control group (p=0.021). Follicle diameters on day 6 and 8 of the culture period were significantly larger in the MEF group than those in the control group (p=0.021, p=0.007, respectively). Estradiol levels in culture media on day 4, 6, 8, 10 and 12 of the culture period were significantly higher in the MEF group (p=0.043, p=0.021, p=0.006, p<0.001 and p=0.008, retrospectively). Our data suggest that MEF cell co-culture on IVM of mouse preantral follicle increases survival rate and promotes follicular growth and steroid production.
Although, one of the etiologies of localized lipodystrophy of the subcutaneous connective tissue (cellulite) is the histological alternation of adipose tissue, the characteristics of expression of the components of extracellular matrix (ECM) components during adipogenesis are not uncovered. In this study, the effects of caffeine and Ishige okamurae originated diphlorethohydroxycarmalol (DPHC) on the expression of extracellualr fibers was analyzed with quantitative RT-PCR during differentiation induction of mouse subcutaneous adipose derived stem cells (msADSC) into adipocyte. The expression levels of Col1a, Col3a1, and Col61a were decreased by the adipogenci induction in a time-dependent manners. However, Col2a mRNA and Col4a1 mRNA expressions were oposit to them. Caffeine and DPHC stimulated the changes of the expression of these collagens. Eln mRNA expression was increased by induction. DPHC stimulated the expression of it. Mfap5 mRNA expression was deceased in both adipogenic cell and matured adipocytes. Caffeine suppressed the expression of Mfap5 but the effect of DPHC was different by the concentration. The expression of bioglycan, decorin, and lumican were also modified by caffeine and DPHC in a concentration-dependent manner. Based on this study, we revealed firstly the effects of caffeine and DPHC on the expression of collagens, elastin, and glycoproteins during adipogenesis of msADSCs. Those results suggest that DPHC may have antiadipogenic effect and has more positive effets on normal adipose tissue generation and work as suppressor the abnormality of ECM structure. Such results indicate that DPHC can be applied in keeping the stability of the ECM of adipogenic tissues.
Bisphenol A (BPA) is an estrogenic endocrine disrupter. However, depending on a way of treatment, the harmful effects of BPA have not been confirmed. Also, trans-generational effects of BPA on male reproduction are still controversial. Because the reabsorption of testicular fluid in the efferent ductules (ED) and initial segment (IS) is important for sperm maturation, the present study was designed to determine trans-generational effect of BPA administrated orally on expression of water transport-related molecules in the mouse ED and IS. Ethanol-dissolved BPA was diluted in water to be 100 ng (low), 10 ㎍ (medium), and 1 ㎎/㎖ water (high). BPA-containing water was provided for two generations. Expression of ion transporters and water channels in the ED and IS were measured by relative real-time PCR analysis. In the ED, BPA treatment caused expressional increases of carbonic anhydrase II, cystic fibrosis ransmembrane regulator, Na+/K+ ATPase α1 subunit, and aquaporin (AQP) 1. No change of Na+/H+ exchange (NHE) 3 expression was detected. BPA treatment at medium dose resulted in an increase of AQP9 expression. In the IS, the highest expressional levels of all molecules tested were observed in medium-dose BPA treatment. Generally, high-dose BPA treatment resulted in a decrease or no change of gene expression. Fluctuation of NHE3 gene expression by BPA treatment at different concentrations was detected. These findings suggest that trans-generational exposure to BPA, even at low dose, could affect gene expression of water-transport related molecules. However, such effects of BPA would be differentially occurred in the ED and IS.