검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2024.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        During the formation of large-scale structures in the universe, weak internal shocks are induced within the hot intracluster medium (ICM), while strong accretion shocks arise in the warm-hot intergalactic medium (WHIM) within filaments, and the warm-cold gas in voids surrounding galaxy clusters. These cosmological shocks are thought to accelerate cosmic ray (CR) protons and electrons via diffusive shock acceleration (DSA). Recent advances in particle-in-cell and hybrid simulations have provided deeper insights into the kinetic plasma processes that govern microinstabilities and particle acceleration in collisionless shocks in weakly magnetized astrophysical plasma. In this study, we adopt a thermal-leakage type injection model and DSA power-law distribution functions in the test-particle regime. The CR proton spectrum directly connects to the Maxwellian distribution of protons at the injection momentum pinj = Qppth,p. On the other hand, the CR electron spectrum extends down to pmin = Qepth,e and is linked to the Maxwellian distribution of electrons. Here, pth,p and pth,e, are the proton and electron thermal momenta, respectively. Moreover, we propose that the postshock gas temperature and the injection parameters, Qp and Qe are self-regulated to maintain the test-particle condition, as the thermal energy is gradually transferred to the CR energy. Under these constraints, we estimate the self-regulated values of the temperature reduction factor, RT , and the proton injection parameter, Qp, along with the resulting CR efficiencies, ηp and ηe. We then provide analytical fitting functions for these parameters as functions of the shock Mach number, Ms. These fitting formulas may serve as valuable tools for quantitatively assessing the impact of CR protons and electrons, as well as the resulting nonthermal emissions in galaxy clusters and cosmic filaments.
        4,000원
        4.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) in supernova remnants (SNRs) within the Galaxy. Plasma and MHD simulations have shown that the self-excitation of MHD waves and ampli cation of magnetic fields via plasma instabilities are an integral part of DSA for strong collisionless shocks. In this study we explore how plasma processes such as plasma instabilities and wave-particle interactions can affect the energy spectra of CR protons and electrons, using time-dependent DSA simulations of SNR shocks. We demonstrate that the time-dependent evolution of the shock dynamics, the self-amplified magnetic fields and Alfvenic drift govern the highest energy end of the CR energy spectra. As a result, the spectral cutoffs in nonthermal X-ray and γ-ray radiation spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. We also nd that the maximum energy of CR protons can be boosted significantly only if the scale height of the magnetic field precursor is long enough to contain the diffusion lengths of the particles of interests. Thus, detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations are crucial for understanding the nonthermal radiation from CR acceleration sources.
        3,000원
        6.
        2014.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.
        4,000원
        7.
        2013.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nonthermal radiation from supernova remnants (SNRs) provides observational evidence and constraints on the diffusive shock acceleration (DSA) hypothesis for the origins of Galactic cosmic rays (CRs). Recently it has been recognized that a variety of plasma wave-particle interactions operate at astrophysical shocks and the detailed outcomes of DSA are governed by their complex and nonlinear interrelationships. Here we calculate the energy spectra of CR protons and electrons accelerated at Type Ia SNRs, using time-dependent, DSA simulations with phenomenological models for magnetic field amplification due to CR streaming instabilities, Alfv´enic drift, and free escape boundary. We show that, if scattering centers drift with the Alfv´en speed in the amplified magnetic fields, the CR energy spectrum is steepened and the acceleration efficiency is significantly reduced at strong CR modified SNR shocks. Even with fast Afv´enic drift, DSA can still be efficient enough to develop a substantial shock precursor due to CR pressure feedback and convert about 20-30% of the SN explosion energy into CRs. Since the high energy end of the CR proton spectrum is composed of the particles that are injected in the early stages, in order to predict nonthermal emissions, especially in X-ray and -ray bands, it is important to follow the time dependent evolution of the shock dynamics, CR injection process, magnetic field amplification, and particle escape. Thus it is crucial to understand the details of these plasma interactions associated with collisionless shocks in successful modeling of nonlinear DSA.
        4,800원
        8.
        2011.10 구독 인증기관·개인회원 무료
        9.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The existence and extent of non-thermal phenomena in galaxy clusters is now well established. A key question in our understanding of these phenomena is the origin of the relativistic electrons which may be constrained by the modelling of the fine radio properties of radio halos and of their statistics. In this paper we argue that present data favour a scenario in which the emitting electrons in the intracluster medium (ICM) are reaccelerated in situ on their way out. An overview of turbulent-particle acceleration models is given focussing on recent time-dependent calculations which include a full coupling between particles and MHD waves.
        4,000원