작물 증발산량은 잠재 증발산량에서 작물계수를 곱하여 작 물의 요수량을 산출할 수 있어 수자원 관리에 널리 사용되는 방법이다. 특히 유엔식량농업기구(FAO)가 관개 및 배수 논 문 NO.56에서 발표한 Penman-Monteith 방정식(FAO 56-PM) 은 잠재 증발산량을 추정하는 표준방법으로, 평균온도, 최대 온도, 최소온도, 상대습도, 풍속 및 일사량의 6가지 기상 데이 터가 필요하다. 그러나 농경지 인근에 설치된 기상센서는 설 치 및 유지보수 비용이 높아 결측, 이상치와 같은 데이터 신뢰 성 문제를 야기하여 정확한 증발산량 계산을 복잡하게 만든 다. 본 연구에서는 인근 기상청의 데이터를 사용하여 필요한 6가지 기상 변수를 예측함으로써 기상 센서 없이 작물 증발산량을 추정할 수 있는지 조사하였다. 우리는 기상청의 API를 통해 수집할 수 있는 22개의 기상 변수를 입력 데이터로 활용 했다. 9개의 회귀 모델을 학습한 후 성능에 따라 상위 3개를 선 택하고 하이퍼파라미터 튜닝을 적용하여 최적의 모델을 식별 했다. 가장 좋은 성능을 보인 모델은 Extreme Gradient Boosting Regression(XGBR)이었으며 평균온도, 최대온도, 최소온도, 상대습도, 풍속 및 일사량에서 결정계수(R2)가 각 0.98, 0.99, 0.99, 0.91, 0.72, 0.86로 높은 결과를 얻을 수 있었다. 이러한 결과는 XGBR 모델이 작물 기상 데이터를 사용하여 작물 증 발산 모델에 필요한 입력 값을 정확하게 예측할 수 있어 값비 싼 기상 센서가 필요 없음을 시사한다. 이 접근 방식은 센서 설 치 및 유지보수가 어려운 지역에서 특히 유용할 수 있으며, 직 접적인 센서 데이터 없이도 표준 증발산 모델의 사용을 가능 하게 한다.
ETc 손실을 보상하는데 필요한 물의 양을 작물 용수 요구량(Crop water requirement, CWR)로 정의되며, ETc 평가는 작물 필요 요구량을 정확하게 정량화하는 데 필요하며, 물 균형 계산에서 중요한 역할을 한다. 토마토와 파프 리카의 실제 관수 요구량(Actual crop water, ACW)이 적절한 CWR인지 평가하였다. 토마토와 파프리카 재배에 적정한 AWC 예측 및 추정을 위하여 온실 내부 환경데이터를 Penman-Monteith을 이용하여 기준 작물 증발산(ET)을 계산한 후, 기준 증발산은 작물 상수(Kc;토마토-1.15, 파프리카-1.05)계수로 조정하였다. 토마토와 파프리카의 CWR과 ACW를 계산하여 비교 평가한 결과 ACW가 CWR을 대체할 수 있지만 파프리카의 ACW는 필요 이상으로 높게 나타났다. 또한, 토마토의 ACW는 1일 100 ~ 1,200 ml이고, 파프리카의 ACW는 1일 100 ~ 500 ml가 적절한 것으로 나타났다. 그러나, 스마트 온실에서 ETc의 정밀도를 높이려면, ETc가 CWR로 변환되고 ACW와 비교하기 위해서 클래스 A팬 설정이 필요하다. 향후 실시간으로 CWR을 측정하기 위한 시뮬레이션 프로그램 연구가 필요하다.
밀폐된 식물공장 환경에서 환경 조절 및 에너지 소비예측을 위해서는 환경요소들의 변화 요인을 파악해야 한다. 식물체는 광합성 과정에서 많은 양의 물을 증산을 통해 대기 중으로 방출하게 되는데, 일반적으로 식물공장의 특성상 비교적 높은 습도 유지가 필요하며, 증산은 실내 습도에 직접적인 영향을 주기 때문에 식물의 증산량에 대한 정량화가 필요하다. 본 연구에서는 식물공장 생육조건에서 4가지 품종의 상추를 재배하면서 생육기간에 따른 엽면적 변화와 증산속도를 측정하고 이를 바탕으로 Penman-Monteith 방정식을 식물공장 조건에 맞게 변형시켰다. 그리고 이러한 결과들을 토대로 식물공장에서 재배 기간 중 증산으로 인해 발생하는 수분의 양을 시뮬레이션을 통해 예측하였다. 그 결과 작물의 엽면적과 증산속도는 생육기간이 진전됨에 따라 점차 증가하는 것으로 나타났으며 엽면적과 증산량 사이는 비례관계를 나타냈다. 증산량 추정 모델식 변형은 일반적으로 다양한 환경 요인들에 의해 증산량이 결정되던 기존의 모델식들에 비해 엄밀한 환경 요소들에 대한 제어가 가능한 식물공장에서 증산량은 환경 요소들은 상수로 취급 가능하며, 작물의 엽면적지수의 변화에 대해서만 주로 결정되었다. 또한 설정된 환경 조건에서 생육기간에 따른 증산량 추정모델을 이용하여 전체 생육기간 중 작물 개체당 누적 증산량을 높은 결정계수(r2)로 예측할 수 있었다. 이렇게 예측된 증산량은 식물공장 환경 제어 기술 중 냉난방 부하 계산 및 관수 계획을 세우는데 활용 가능할 것이다.