This paper presents some physical evidences indicating that reduced friction occurs in an cryogenic machining process, in which LN2 is applied selectively in well-controlled jets to the selected cutting zone. In machining tests, cryogenic machining reduced the force component in the feed direction, indicating that the chip slides on the tool rake face with lower friction. This study also found that the effectiveness of LN2 lubrication depends on the approach how LN2 is applied regarding cutting forces related.
The purpose of this study was to perform a functional components analysis and investigate the physical properties of powders made from the stems or fruit of freeze-dried Cheonnyuncho cactus (Opuntia humifusa). The functional components analysis showed that the stem and fruit powders han vitamin C levels of 42.14 mg and 105.21 mg, respectively. The stems powder contained more lutein than the fruit powder. The fruit powder contained more vitamin C than the stem powder. The SDF (soluble dietary fiber) and IDF (insoluble dietary fiber) in the stem powder were 45.24% and 22.15%, respectively, which were higher then the values for the fruit powder. The stem and fruit powders contained 19.30 mg/g and 25.10 mg/g of crude saponin, respectively. The pH of the stem and fruit powders was 5.34 and 5.07, respectively, both indicating low acidity. The L, a and b values of the stem powder color were 78.28, –3.71, and 19.19, respectively. The L, a and b values of the fruit powder color were 55.56, 24.84, and –3.18, respectively. The stems powder had a higher bulk density, water holding capacity, and swelling power than those of the fruit powder, but water-retaining capacity of the stem powder was lower than that of the fruit powder. In addition, the stems powder had a higher viscous material content and water uptake compared to the fruit powder. Based on the above results, we determined that Cheonnyuncho (Opuntia humifusa) powder had potentially useful functional components and physical properties.