This study was carried out forecasting of pollution inflow of the Small Mountainous Catchment, namely; Seolma-cheon experimental catchment. Pollutographs of DO, BOD, T-N, Conductivity, T-P, pH, COD, SS from this catchment were obtained from in-situ data of total ten events using QUAL2E-PULS model. From the analysis results, between up stream(Sabang-bridge) and down stream (Memorial-bridge, outlet) obtained relation formula of water quality component. Determination coefficient of relation formula, Conductivity, COD, BOD, DO, pH, T-N, T-P, and SS showed high relation of 0.87~0.99. The increases of DO, BOD, COD, and pH concentration of Memorial-bridge were associated with pollution inflow by road building far 2.25 km from Sabang-bridge to down stream. The analysis results of QUAL2E-PULS simulation and up/down stream relation formula, pollution amounts of DO, BOD, COD and pH increased at Memorial-bridge and pollution source site. Therefore, pollution inflow can be forecasted exactly by up/down stream relation formula at pollution source site.
This study focuses on analyzing the inflow characteristic of contaminants of city water that flows into a main water system like a reservoir, and intends to provide basic data which can be efficiently reflected on water quality management policy and decision making of a reservoir. The conclusion obtained from the analysis of the inflow of a main water system by analyzing the inflow property of city water contaminants is as follows. In the case of Chungju-cheon stream which is the city water, pollution load from the basic outflow is low when it rains, and with high load of basic outflow during the dry season, due to the discharge of pollutants from the city, the quality of water becomes worse. In the case of Chungju-cheon stream, average BOD is 4.53mg/ℓ when it rains, and the contaminants increase and flow in about 7.8% compared to the average BOD during the average ‧ droughty season. The average SS concentration in water is 798.67mg/ℓ and increased 97.2% compared to the average ‧ droughty season.