To address the need for a suitable thermoplastic resin-based sizing agent for accommodating the increasing demands of carbon fiber-reinforced plastic, in this work, alcohol-soluble polyamide 6 (PA6) and silane were chemically combined in a certain ratio to improve the mechanical interface properties of the carbon fiber/PA6 composite, and the enhancement in the mechanical interface strength of the final composite according to the treatment time was confirmed. Carbon fiber surface properties were analyzed through ultrahigh-resolution field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. The tensile strength of carbon fibers before and after hybrid sizing treatment and the mechanical interfacial shear strength of the final composite were analyzed using tensile and universal testing machines, respectively. After the hybrid sizing treatment, the introduction of the sizing agent to the carbon fiber surface was confirmed through FE-SEM, and a simultaneous increase in the surface roughness was observed. Moreover, the interfacial adhesion was confirmed to increase significantly, as compared to that of the desized carbon fiber. Therefore, this modified sizing agent treatment serves as an effective method for improving the mechanical interfacial adhesion between the carbon fiber and the PA6 matrix.
Hemodialysis membrane was prepared with polyamide6 via electrospinning technology for portable or wearable hemodialysis machine. Polyamide6 polymer solution was formed nanofiber membrane with fiber diameter of 72 ㎚, pore size 140 ㎚. Polyamide6 nanofiber membrane was chemically modified to enhance hemodialysis performance. Modified polyamide6 membrane showed an excellent hemodialysis performance and antifouling resistance against protein supplements by the esterification and crosslinking reaction.