검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2012.05 구독 인증기관·개인회원 무료
        The toxicity of materials derived from the seed of Pongamia pinnata to third instars of insecticide-susceptible Culex pipiens pallens and Aedes aegypti and wild Aedes albopictus was examined using a direct contact bioassay. Results were compared with those of the currently used insecticides fenthion and temephos. The active principles of Pongamia pinnata were identified as the karanjin (1), karanjachromene (2), pongamol (3), pongarotene (4), oleic acid (5), and palmitic acid (6) by spectroscopic analysis. Based on 24 h LC50 values, karanjin (14.61 and 16.13 mg/L) was the most toxic compound, followed by oleic acid (18.07 and 18.45 mg/L) and karanjachromene (18.74 and 20.57 mg/L). These constituents were less toxic than either fenthion (LC50, 0.0031 and 0.0048 mg/L) or temephos (0.021 and 0.050 mg/L) against Ae. aegypti and Cx. p. pallens. Low toxicity was produced by pongamol (LC50, 23.95 and 25.76 mg/L), pongarotene (25.52 and 37.61 mg/L), and palmitic acid (34.50 and 42.96 mg/L). Against A. alpopictus instars, oleic acid (LC50, 18.79 mg/L) was most toxic. Low toxicity was observed with the other five constituents (LC50, 35.26- 85.61 mg/L). P. pinnata seed-derived active principles, particularly karanjin, karanjachromene, and oleic acid, merits further study as potential mosquito larvicides for the control of mosquito populations in light of global efforts to reduce the level of highly toxic synthetic larvicides in the aquatic environment.
        2.
        2010.05 구독 인증기관·개인회원 무료
        The toxicity of materials derived from seed of Pongamia pinnata Pierre toward to third instar larvae of Aedes aegypti and Culex pipiens pallens was examined using direct contact bioassay. Results were compared with those of the currently used insecticides: fenthion and temephos. The active principles of Pongamia pinnata were identified as the karanjin (1), pongamone (2), palmitic acid (3) and karanjachromene (4), by spectroscopic analysis. Based on 24h LC50 values, karanjin (14.61 and 16.13 ppm) was the most toxic compound but less effective than fenthion (0.0031 and 0.068 ppm) and temephos (0.016 and 0.056 ppm) against Ae. aegypti and Cx p. pallens. Moderate toxicity was produced by pongamone (34.50 and 39.53 ppm), palmitic acid (36.93 and 42.96 ppm), and karanjachromene (43.05 and 48.95 ppm). P. pinnata seed derived materials, particularly karanjin, merit further study as potential mosquito larvicides for the control of mosquito populations in light of global efforts to reduce the level of highly toxic synthetic larvicides in the aquatic environment