검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 63

        61.
        2000.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous carbon from charcoal filled polypropylene composites were prepared and their mechanical properties were evaluated. In preparing the composites, crosslinking agent (sodium benzonate) were used in order to improve the bonding force between matrix and fillers. In this study, the effects of charcoal powder and sodium benzonate concentration on the mechanical properties and interface phenomena on the composites were evaluated. The mechanical properties of composites increased progressively with the decrease of filler loading. In the case of addition of the crosslinking agent into the composite, the mechanical properties were increased and showed maximum value at the 3 wt% concentration of sodium benzonate. According to the result of the TGA, the weight loss of composite according to crosslinking agent was not observed and initial thermal degradation temperature of composite reinforced charcoal was located at 390℃.
        3,000원
        62.
        2000.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Performance of direct methanol fuel cell using high porous active carbon as an uncatalysed diffusion layer in anode (composite electrode) has been evaluated. Effects of porous active carbon in anode were investigated by galvanostatic method and Fourier Transform Infrared spectroscopy. The single cell was operated with 2.5 M methanol at temperature of 80-120℃ and showed performance of 210-510 mA/cm2 at 0.4V. By replacing conventional electrode with composite electrode, the increment of 290 mA/cm2 in current density was obtained at 90℃and 0.4V. The potential decay of the single cell was about 14.5% for 20 days operation.
        3,000원
        63.
        2004.03 KCI 등재 서비스 종료(열람 제한)
        An experimental study on the preparation of monolithic porous polymers by environmentally friend process in supercritical carbon dioxide has been carried out. Polymerization mixture composed of a cross-linking monomer, initiator and functional co-polymer was charged in the reactor with sapphire window. After the system was purged with a flow of CO2 for 15 min, the reactor was pressurized with liquid CO2 up to 100 bars. The reactor was isolated from and placed back to the system via quick connector for shaking until the mixture had become fully homogeneous. The reactor was then heated and pressurized to the required reaction conditions and left overnight. After cooling and CO2 evacuation, the polymer was removed from the reactor as dry, white, continuous monoliths. The effect of experimental conditions on the physical properties of porous polymer was systematically examined, and it was found that monomer content had a major effect on the physical properties of the polymers.
        1 2 3 4