최근 해수와 담수의 염분농도차를 이용하여 발전하는 역전기투석(Reverse Electrodialysis; RED)은 잠재량이 크고 지속적 전력생산이 가능한 친환경적이며 미래지향적 신재생에너지로 인식되어 연구가 활발히 진행되고 있다. 염분차발전은 무한 청정의 바닷물을 이용하는 기술로, 발전 과정에서 이산화탄소, 방사성 물질, 오염 폐수가 거의 발생되지 않는 친환경 미래 블루에너지 기술이다. RED 기술의 상용화를 위해서는 최적화된 소재, 스택 설계 및 공정기술의 개발이 필요하다. 특히 스택의 대용량화 및 막 성능 향상 등 시스템 효율과 관련된 원천 기술의 확보가 필수적이다. KIER에서는 kW급 염분차발전 기술과 전용막 개발을 수행 중에 있으며, 최근 발전성능에서 세계 최고수준의 2.4 W/m2를 얻었다.
국가별 환경, 정채 흐름에 따라 상이하게 적용되어온 폐기물 에너지화 기술은 도시고형폐기물을 비롯한 폐자원을 증기, 열, 전력 등으로 전환하는 기술을 의미한다. 국내 「신재생에너지 개발・이용・보급촉진법」에 의거하여 사업장에서 폐기물을 변환시켜 생산된 연료 및 소각 열에너지를 신재생에너지로 정의하고 있으며, 「자원순환기본법」의 소각처분부담금 감면을 위한 에너지 회수율 증진을 목적으로 폐기물 에너지화 기술이 주목을 받고 있다. 폐기물 에너지화 기술 중 열적처리의 시장 규모는 연간 190만 달러, 연평균 4.3%의 성장세를 보이고 있으나, 선진국 대비 국내 폐기물 에너지화 기술력은 50% 이하의 낮은 수준을 보유하고 있는 실정이다. 또한 국내 생활폐기물 소각시설의 평균 증기발전 효율이 10% 정도로 매우 낮으며, 사업장폐기물 소각시설은 주로 발전 보다 증기의 직접적 이용에 편향된 경향을 보이고 있다. 따라서 본 연구에서는 국내 사업장폐기물 소각시설 공정에 요소기술 적용 시 에너지 절감량을 열정산법에 따라 산정하여 에너지 고효율화 및 온실가스 감축 효과를 분석하고자 하였다. 소각시설에 적용한 요소기술은 증기 회수 및 활용을 중점으로 ①열 회수 능력강화(저온이코노마이저, 낮은 공기비 연소), ②증기의 효율적 이용(저온촉매탈질, 고효율 건식 배기가스 처리, 백연저감 미적용 또는 가동 중지, 배수폐쇄 시스템 미적용), ③증기터빈 시스템의 효율 향상(고온고압 보일러)으로 구분하여 결과를 정리하였다. 에너지 절감 및 온실가스 감축량 산정은 요소기술 적용 시 추가적으로 회수할 수 있는 증기량을 기준으로 보일러 배기가스량, 폐기물 저위발열량, 각 요소기술 변화 요인(과잉공기비, 출구온도 등), 국가고유 전력배출계수를 바탕으로 산정하였다.
폐기물로부터 에너지를 회수하고자 하는 노력은 전세계적인 추세이며, 국내에서도 가연성 폐자원의 효율적인 친환경적 처리, 에너지 회수를 위한 다양한 정책과 법규가 만들어져 진행되고 있다. 가연성 폐기물로부터 에너지를 회수하는 전통적인 방법인 소각과 비교하여 가스화 기술은 생산된 합성가스를 다양한 방법으로 활용할 수 있다는 장점을 보유하고 있다. 합성가스가 가지고 있는 화학적 에너지를 활용하여 직접 엔진을 가동할 수 있으며, 가스화 방식에 따라 합성가스 내에 포함된 수소, 일산화탄소 등의 성분을 화학반응의 원료로 사용할 수도 있다. 따라서, 국내에서도 폐기물로부터 얻어진 합성가스를 다양한 방법으로 활용하기 위한 많은 연구들이 진행중에 있다. 본 연구에서는 국내 지자체에서 발생되는 생활폐기물의 비성형고형연료화 및 가스화 발전 기술을 적용하여 폐기물이 갖는 에너지를 회수하고자 비성형고형연료 8톤/일 규모의 하향식 고정층 가스화로와 세정설비, 가스엔진 발전을 통해 약 250kW이상의 전력을 생산하는 시스템을 설치 및 운영하였으며, 실증설비의 설계를 위한 다양한 인자에서의 결과를 알아보았다. 가스화 특성에 따른 발전 효율을 토대로 가스화 기술의 경제성을 평가함에 따라 상용공정으로의 적용 가능성을 확인할 수 있었다.