검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2014.04 구독 인증기관·개인회원 무료
        Dynamics of predator-prey systems are strongly affected by the strategic behavior of both predator and prey. Thus, understanding the relationship between the strategic behavior and the species survival is necessary to comprehend the system resilience and stability. In the present study, we constructed a spatially explicit lattice model to simulate integrative predator (wolf)-prey (two rabbit species)-plant relationships. Wolves have only the hunting strategy, while rabbits have the hunting-escaping strategy. When a rabbit simultaneously encounters its predator (wolves) and prey (plant), either hunting or escaping should take priority. Hunting priority is referred to as hunting preferred strategy (HPS), while escape priority is referred to as escape preferred strategy (EPS). These strategies are associated with some degree of willingness to either hunt (H) or escape (E). One rabbit species takes HPS (HPS-rabbit) and the other rabbit species takes EPS (EPS-rabbit). We investigated the changes in predicted population density for wolves, rabbits, and plant with changes in the value of H and E. Simulation results indicated that EPS-rabbit had a greater chance for survival than HPS-rabbit regardless of the initial density of EPS-rabbit, and the chance was optimized at the appropriate values of E and H. In addition, we briefly discussed the development of our model as a tool for understanding behavioral strategies in specific predatorprey interactions.