검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 대파의 가락시장 도매가격을 이용하여 기존 시계열 모형인 ARIMA 모형, 홀트-윈터스 평활법과 대표적인 기계학습 방법인 랜덤 포레스트(Random forest) 분석 기법의 가격 예측력을 비교하였다. 세 모형의 예측력을 분석한 결과는 다음과 같다. 가장 예측력이 높게 나타난 모형은 3년(36개월)을 주기로 설정한 ARIMA 모형이었다. 또한 ARIMA 모형과 홀트-윈터스 평활법은 일별 데이터보다 월별 데이터를 이용한 예측 결과의 정확도가 더 높아 훈련 데이터에 대한 과적합(overfitting)이 오히려 예측력을 낮추는 현상을 보였다. 반면, 랜덤 포레스트는 월별 데이터 보다 일별 데이터를 사용한 모형의 예측력이 더 높았다. 이는 학습량이 많을수록 높은 예측력을 보여주는 기계학습의 특징을 보여주었다. 그러나 기계학습 방법을 활용한 가격 예측에는 가격에 영향을 주는 설명변수를 찾고, 양질의 훈련 데이터 축적이 필요하다는 것을 알 수 있었다. 향후 연구에서는 다양한 설명변수와 기계학습 및 딥러닝 기법을 적용한다면 농축산물 가격 예측력을 높이는데 도움이 될 것으로 판단된다.
        4,000원
        2.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study conducted to predict the stock market prices based on the assumption that internet news articles might have an impact and effect on the rise and fall of stock market prices. The internet news articles were tested to evaluate the accuracy by comparing predicted values of the actual stock index and the forecasting models of the companies. This paper collected stock news from the internet, and analyzed and identified the relationship with the stock price index. Since the internet news contents consist mainly of unstructured texts, this study used text mining technique and multiple regression analysis technique to analyze news articles. A company H as a representative automobile manufacturing company was selected, and prediction models for the stock price index of company H was presented. Thus two prediction models for forecasting the upturn and decline of H stock index is derived and presented. Among the two prediction models, the error value of the prediction model ① is low, and so the prediction performance of the model ① is relatively better than that of the prediction model ②. As the further research, if the contents of this study are supplemented by real artificial intelligent investment decision system and applied to real investment, more practical research results will be able to be developed.
        4,000원