Process Capability (Cpk) is a representative measure of how well the producer manages dispersion and bias for the specifications needed by the consumer. This is expressed as a ratio of 6 times the natural tolerance to the specification. As the producer manages the dispersion small, the capacity index becomes higher. And it is classified into 5 grades according to the degree of management. It is a measure of the quality of processes used in most industrial fields. However, Cpk is calculated by only reflecting the mean and dispersion of the process, there is a disadvantage that it can not give information about the economic loss caused by the inconsistency of the process with the target value. Overcoming these drawbacks, process capability indexes reflecting various types of loss functions such as Cpm, C┼pm and Cpl have been developed. However, all of these previous studies have applied the limit to the consumer specification, which is based on the traditional and passive quality perception that the quality characteristic should exist within the limits of the consumer specification. In this study, we will develop ‘Customer Satisfaction Quality Indicator (CSQI)’ which is a quantitative indicator that can be fully evaluated when the manufacturer’s specification limit, which is an aggressive quality strategy, is applied. This is expected to be useful decision information for both producers and consumers.
Taguchi regarded the concept of quality as ‘total loss to society due to fluctuations in quality characteristics from the time of supplied to the customer.’ The loss function is a representative tool that can quantitatively convert the loss that occurs due to the deviation of the quality characteristic value from the target value. This has been utilized in various studies with the advantage that it can change the social loss caused by fluctuation of quality characteristics to economic cost. The loss function has also been used extensively in the study of producer specification limits. However, in previous studies, only the second order loss function of Taguchi is used. Therefore, various types of losses that can occur in the process can’t be considered. In this study, we divide the types of losses that can occur in the process considering the first and second loss functions and the Spiring’s reflected normal loss function, and perform total inspection before delivering the customer to determine the optimal producer specification limit that minimizes the total cost. Also, we will divide the quality policy for the products beyond the specification limits into two. In addition, we will show the illustration of expected loss cost change of each model according to the change of major condition such as customer specifications and maximum loss cost.