검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 31

        11.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As a preclinical study, many researchers have been attempted to convert the porcine PSCs into several differentiated cells with transplantation of the differentiated cells into the pigs. Here, we attempted to derive neuronal progenitor cells from pig embryonic germ cells (EGCs). As a result, neuronal progenitor cells could be derived directly from pig embryonic germ cells through the serum-free floating culture of EB-like aggregates (SFEB) method. Treating retinoic acid was more efficient for inducing neuronal lineages from EGCs rather than inhibiting SMAD signaling. The differentiated cells expressed neuronal markers such as PAX6, NESTIN, and SOX1 as determined by qRT-PCR and immunostaining. These data indicated that pig EGCs could provide valid models for human therapy. Finally, it is suggested that developing transgenic pig for disease models as well as differentiation methods will provide basic preclinical data for human regenerative medicine and lead to the success of stem cell therapy.
        4,000원
        12.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The kidney is a highly complex organ, and acute or chronic renal diseases can occur with various complications such as diabetes and hypertension. So far, no target specific treatment is available in acute or chronic renal failure, necessitating the development of alternative therapeutic strategy. Recent experimental findings suggest that the renal function and structure can be restored after being treated with various sources of stem/progenitor cells. In this review, we discuss up-to-date findings of the potential of renal progenitor/stem cells in alleviating renal injuries with a focus on preclinical studies. We also review cellular mechanisms underlying the therapeutic function of these cells.
        4,000원
        13.
        2018.11 구독 인증기관·개인회원 무료
        Because the pig is a valuable candidate for a preclinical model of human cell therapy as well as an important food source, understanding a physiology of pig myogenic progenitors such as skeletal muscle satellite cells and myoblasts is required for cure of muscular diseases and improvement of meat production. For these reasons, we tried to isolate and culture the pig progenitor cells from skeletal muscle. Pig satellite cells, known as muscle stem cells, were isolated from biceps femoris of neonatal pigs by enzymatic digestion method. Muscle satellite cells are quiescent in uninjured muscle. Upon injury, they are activated into proliferating state, known as myoblasts, by growth factors and, in turn, differentiated forward to myocytes and myotubes. To trigger proliferation in vitro, the isolated satellite cells were cultured with epidermal growth factor (EGF) and dexamethasone (BMP4 inhibitor). As a result, the pig satellite cells were efficiently converted into proliferating myoblasts and stably maintained over an extended period. The myoblasts were confirmed by markers of PAX7, MYF5, and MYOD1. Our finding showed that modulating EGF and BMP4 signaling are essential for maintaining muscle stem cells. This culture method could be applied for a production of cultured meat and further basic research of muscle development. This work was supported by the Korea Institute of Planning and Evaluation for Technology in food, agriculture, forestry, and fisheries (IPET) through the Development of High Value-Added Food Technology Program funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA; 118042-03-1-HD020).
        17.
        2011.12 구독 인증기관 무료, 개인회원 유료
        Cellular uptake of nanoparticles for stem cell labeling and tracking is a critical technique for biomedical therapeutic applications. However, current techniques suffer from low intracellular labeling efficiency and cytotoxic effects, which has led to great interest in the development of a new labeling strategy. Using silica-coated nanoparticles conjugated with rhodamine B isothiocyanate (RITC) (SR), we tested the cellular uptake efficiency, biocompatibility, proliferation or differentiation ability with murine bone marrow derived hematopoietic stem/progenitor cells. The bone marrow hematopoietic cells showed efficient uptake with SR with dose or time dependent manner and also provided a higher uptake on hematopoietic stem/progenitor cells. Biocompatibility tests revealed that the SR had no deleterious effects on cell cytotoxicity, proliferation, or multi-differentiation capacities in vitro and in vivo. SR nanoparticles are advantageous over traditional labeling techniques as they possess a high level of cellular internalization without limiting the biofunctionality of the cells. Therefore, SR provides a useful alternative for gene or drug delivery into hematopoietic stem/progenitor cells for basic research and clinical applications.
        4,000원
        18.
        2011.09 구독 인증기관 무료, 개인회원 유료
        Endothelial cells are a vital constituent of most mammalian organs and are required to maintain the integrity of these tissues. These cells also play a major role in angiogenesis, inflammatory reactions, and in the regulation of thrombosis. Angiogenesis facilitates pulp formation and produces the vessels which are essential for the maintenance of tooth homeostasis. These vessels can also be used in bone and tissue regeneration, and in surgical procedures to place implants or to remove cancerous tissue. Furthermore, endothelial cell regeneration is the most critical component of the tooth generation process. The aim of the present study was to stimulate endothelial regeneration at a site of acute cyclophosphamide (CP)-induced endothelial injury by treatment with human umbilical cord-derived endothelial/mesenchymal stem cells (hEPCs). We randomly assigned 16 to 20-week-old female NOD/SCID mice into three separate groups, a hEPC (1 × 105 cells) transplanted, 300mg/kg CP treated and saline (control) group. The mice were sacrificed on days 5 and 10 and blood was collected via the abdominal aorta for analysis. The alanine transaminase (ALT), aspartate aminotransferase (AST), serum alkaline phosphatase (s-ALP), and albumin (ALB) levels were then evaluated. Tissue sections from the livers and kidneys were stained with hematoxylin and eosin (HE) for microscopic analysis and were subjected to immunohistochemistry to evaluate any changes in the endothelial layer. CP treatment caused a weight reduction after one day. The kidney/body weight ratio increased in the hEPC treated animals compared with the CP only group at 10 days. Moreover, hEPC treatment resulted in reduced s-ALP, AST, ALT levels compared with the CP only group at 10 days. The CP only animals further showed endothelial injuries at five days which were recovered by hEPC treatment at 10 days. The number of CD31-positive cells was increased by hEPC treatment at both 5 and 10 days. In conclusion, the CP-induced disruption of endothelial cells is recovered by hEPC treatment, indicating that hEPC transplantation has potential benefits in the treatment of endothelial damage.
        4,000원
        1 2