Chemical environments of near-field (Engineered barrier and surrounded host rock) can influence performance of a deep geological repository. The chemical environments of near-field change as time evolves eventually reaching a steady state. During the construction of a deep geological repository, O2 will be introduced to the deep geological repository. The O2 can cause corrosion of Cu canisters, and it is important predicting remaining O2 concentration in the near-field. The remaining O2 concentration in the near field can be governed by the following two reactions: oxidation of Cu(I) from oxidation of Cu and oxidation of pyrite in bentonite and backfill materials. These oxidation reactions (Cu(I) and pyrite oxidation) can influence the performance of the deep geological repository in two ways; the first way is consuming oxidizing agents (O2) and the second way is the changing pH in the near-field and ultimately influencing on the mass transport rate of radionuclides from spent nuclear fuel (failure of canisters) to out of the engineered barrier. Hence, it is very important to know the evolution of chemical environments of near-field by the oxidation of pyrite and Cu. However, the oxidation kinetics of pyrite and Cu are different in the order of 1E7 which means the overall kinetics cannot be fully considered in the deep geological repository. Therefore, it is important to develop a simplified Cu and pyrite oxidation kinetics model based on deep geological repository conditions. Herein, eight oxidation reactions for the chemical species Cu(I) were considered to extract a simplified kinetic equation. Also, a simplified kinetics equation was used for pyrite oxidation. For future analysis, simplified chemical reactions should be combined with a Multiphysics Cu corrosion model to predict the overall lifetime of Cu canisters.
애씨디싸이오바실러스 페로악시댄스(Acidithiobacillus ferrooxidans; Af)에 의한 황철석의 산화 기작을 이해하기 위해 황철석-용액간 접종 배취실험 (batch experiment)을 수행하고, 주기적으로 용액의 화학 조성과 함께 반응 황철석의 표면을 주사전자현미경 (scanning electron microscope; SEM)으로 관찰하였다. 반응 용액의 Fe 농도 분석 결과는 Af가 뚜렷이 구분되는 성장 적응기와 증식기를 거침을 나타내었다. Af 성장 적응기 동안에 황철석 표변에 부착된 개체가 관찰됨으로써 이 기간 동안의 황철석이 Af에 의해 직접용탈 산화됨이 확인되었다. 하지만 부착된 개체가 많이 발견되지 않는 점과 Fe가 주로 Fe(III)로 존재한다는 점 등으로 인해 적응기간 동안 Af가 황철석을 주로 직접용탈을 통해 용해 시켰다고 확신하기는 어렵다. Af 성장 적응기의 중반 이후부터 증식기 직전까지 Fe 함량이 크기 증가 하지 않고 정체되는데, 이는 이 시기에 Af에 의한 황철석의 산화가 직접 또는 간접 용탈식 산화든, Af가 산화 기작의 전환을 위해 적응 기간을 분명히 필요로 하는 것으로 보인다. SEM 관찰 결과 황철석의 표면에서 Af의 세포 분열이 관찰되었다. 이 세포분열 외형을 따라 황철식이 그대로 용식된 모습을 보여주는데, 이는 Af에 의한 산화 속도가 매우 불균등하며 산화가 진행되는 동안에는 농도의 변화로 부터 계산되는 속도보다 훨씬 빠르게 진행됨을 나타낸다. Af의 접종이 이루어진 황철석의 표면에 훨씬 많은 부식홈이 관찰되어 이 미생물에 의한 산화가 무기적인 산화보다 훨씬 빨리 진행됨을 지시한다. Af에 의한 부식 홈은 좁고 깊어, 이것이 적응기-증식기 전이에 영향을 끼쳤을 가능성이 있다.