Support vector regression (SVR) is devised to solve the regression problem by utilizing the excellent predictive power of Support Vector Machine. In particular, the є-insensitive loss function, which is a loss function often used in SVR, is a function thatdoes not generate penalties if the difference between the actual value and the estimated regression curve is within є. In most studies, the є-insensitive loss function is used symmetrically, and it is of interest to determine the value of є. In SVQR (Support Vector Quantile Regression), the asymmetry of the width of є and the slope of the penalty was controlled using the parameter p. However, the slope of the penalty is fixed according to the p value that determines the asymmetry of є. In this study, a new ε-insensitive loss function with p1 and p2 parameters was proposed. A new asymmetric SVR called GSVQR (Generalized Support Vector Quantile Regression) based on the new ε-insensitive loss function can control the asymmetry of the width of є and the slope of the penalty using the parameters p1 and p2 , respectively. Moreover, the figures show that the asymmetry of the width of є and the slope of the penalty is controlled. Finally, through an experiment on a function, the accuracy of the existing symmetric Soft Margin, asymmetric SVQR, and asymmetric GSVQR was examined, and the characteristics of each were shown through figures.
The purpose of this study is to investigate the determinants of the capital structure of firms operating in a developing economy, Pakistan. The quantile regression method is applied on a sample of 183 non-financial companies listed on the Pakistan Stock Exchange during the period of 2008-2017. Specifically, the empirical analysis focuses on changes in the coefficients of the determinants according to the leverage ratio quantiles of the examined listed firms. The findings show that the capital structure of Pakistan listed firms differs between firms in different quantiles of leverage. These differences are significant with the sign of explanatory variables changes with the level of leverage. The research result found tangibility, profitability and age to be positively related to leverage among listed firms in Pakistan. However, size, liquidity and non-debt tax shield (NDTS) are negatively related to leverage. A firm’s growth and risk are found to be insignificant predictors of capital structure in Pakistan listed firms. Moreover, the study also found a significant impact of industry characteristic on leverage. The findings of this study indicate that an individual firm’s finance policy needs to be responsive to the firm’s characteristics and should match with the different borrowing requirements of listed firms.
The study aims to investigate a close relation between macro and non-macro variables on stock performance of tourism companies in Korea. The sample used in this study includes monthly data from January 2001 to December 2018. The stock price index of the tourism companies as a dependent variable are obtained from Sejoong, HanaTour, and RedcapTour as three leading Korean tourism companies that have been listed on the Korea Stock Exchange. This study assesses the tourism stock performance using the quantile regression approach. This study also investigates whether global crisis events as the Iraq War and the global financial crisis as non-macro variables have a significant effect on the stock performance of tourism companies in Korea. The results show that the oil prices, exchange rate and industrial production have negative coefficients on stock prices of tourism companies, while the effects of tourist expenditure and consumer price index are positive and significant. We estimate the result of quantile regression that non-macro determinants have statistically a significant and negative effect on tourism stock performance because the global crisis could threaten traveler’s safety and economy. Overall, empirical results suggest that the effects of macro and non-macro variables are statistically asymmetric and highly related to tourism stock performance.
This study used a quantile regression model and a non-homogeneous regression model to calibrate probabilistic forecasts of wind speed. These techniques were applied to the forecasts of wind speed over Pyeongchang area using 51-member European Centre for Medium-Range Weather Forecast (ECMWF). Reliability analysis was carried out by using rank histogram to identify the statistical consistency of ensemble forecasts and corresponding observations. The performances were evaluated by rank histogram, mean absolute error, root mean square error and continuous ranked probability score. The results showed that the forecasts of quantile regression and non-homogeneous regression models performed better than the raw ensemble forecasts. However, the differences of prediction skills between quantile regression and nonhomogeneous regression models were insignificant.
기존 Ordinary Regression (OR) 방법을 이용한 경향성 분석은 경향성을 과소평가하는 문제점을 나타낸다. 이러한 점에서 본 연구에서는 자료의 정규분포 가정과 평균을 중심으로 경향성 평가가 이루어지는 기존 Ordinary Regression (OR) 방법을 개선한 Quantile Regression (QR) 방법을 제안하였다. 본 연구에서는 64개 강우 관측지점의 연 최대 극대강수량 자료에 대하여 QR 방법과 OR 방법에 대하여 통계적 성능을 평가하였다. QR 방법의 경향성 분석결과 47개 지점에서 5% 오차수준 내에서 t-검정을 통과한 반면 OR 방법에서는 13개 지점 만이 통계적 유의성을 가지는 것으로 나타났다. 이는 OR 방법이 자료의 평균을 중심으로 경향성을 평가하는 기법인데 반해 QR은 자료의 다양한 분위에서 경향성을 평가함으로써 극대 및 극소 부분에서의 경향성을 보다 유연하게 감지하는 이유로 판단된다. QR 방법을 통한 경향성 평가는 평균 중심의 해석문제점을 개선할 수 있으며 자료가 정규분포를 따르지 않거나 왜곡된 분포형태를 갖는 자료의 수문학적 경향성 평가에 유용하게 사용될 수 있을 것으로 판단된다.