Quantitative real-time polymerase chain reaction (RTqPCR) is a rapid and precise method of analysis to quantify the level of gene expression and is widely used in the diagnosis of diseases and quantitative analysis of genes. In RT-qPCR analysis, a reference gene (or housekeeping gene) is used for normalization of experimental results. Since this method of analysis detects a small quantity of the product, it is highly sensitive and it is important for the accuracy and reproducibility of the experiment to select a reference gene suitable for gene expression studies. As the expression levels of the reference gene are affected under different conditions, in order to determine the suitability of the housekeeping gene used as the reference gene, it is necessary to verify the expression stability. In the current study, the stability of the expression of 11 housekeeping genes (B2M, SDHA, GAPDH, RPL13, VIM, EEF1A1, HPRT1, GUSB, RPL19, ACTB, and ABL1) was investigated in the tissues of long-tailed chickens (heart, thigh, and breast). Expression stability evaluation was analyzed with four software: BestKeeper, NormFinder, geNorm, and RefFinder. In our study, GAPDH in heart tissue, HPRT1 in thigh tissue, and RPL13 in breast tissue were selected as the most stable reference genes. Evaluation of the expression stability of housekeeping genes can provide important data in gene expression studies by selecting an appropriate reference gene according to various conditions.
Potential utility of 14 candidate housekeeping genes as normalization reference for RT-qPCR analysis with developmental samples (fertilized eggs to late veliger larvae) in Pacific abalone Haliotis discus hannai was evaluated using four different statistical algorithms (geNorm, NormFinder, BestKeeper and comparative ΔCT method). Different algorithms identified different genes as the best candidates, and geometric mean-based final ranking from the most to the least stable expression was as follow: RPL5, RPL4, RPS18, RPL8, RPL7, UBE2, RPL7A, GAPDH, RPL36, PPIB, EF1A, ACTB and B-TU. The findings were further validated via relative quantification of metallothionein (MT) transcripts using the stable and unstable reference genes, and expression levels of MT were greatly influenced according to the choice of reference genes. In overall, our data suggest that RPL5 and RPS18, either singly or in combination, are appropriate for normalizing gene expression in developmental samples of this abalone species, whereas ACTB, B-TU and EF1A are less stable and not recommended. In addition, our findings propose that standard deviations in geometric ranking as well as geometric mean itself should also be taken into account for the final selection of reference gene(s). This study could be a useful basis to facilitate the generation of accurate and reliable RT-qPCR data with developmental samples in this abalone species.