검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.11 구독 인증기관·개인회원 무료
        Korea Atomic Energy Research Institute (“KAERI”) has been developing pyroprocess technology for the sustainable use of nuclear energy and radioactive waste reduction, and is conducting design studies for a Pyroprocess Commercializing Research Facility (PCRF). High-level radioactive materials such as spent nuclear fuel, which are handled in the hot cell of the PCRF, physically change materials directly or cause chemical changes through ionization or excitation depending on the energy and types of radiation. Therefore, all facilities, including process equipment and remote handling equipment, installed into the hot cell must be evaluated for radiation hardness to be maintained in the radiological environmfent so that processes can proceed throughout the design life of the facility. In addition, as the maintenance paradigm has recently shifted from corrective maintenance to predictive maintenance, it is necessary to know in advance the condition of the equipment or facility in the radiological environment. In this study, an analysis of the radiation environment of the hot cell in the PCRF was conducted through source term, and the radiological dose impact was evaluated through the results of irradiation experiments of major components by reference data. Then, the actual dose contribution was identified through dose assessment using the MCNP code based on the pyroprocess equipment, and the radiation hardness requirements for the facility and equipment in the hot cell were derived by the above results.