With a view towards reducing traffic accidents on roadways, various methods have been considered to predict accidents. In this study, we analyze traffic accident frequency models that employ fixed- and random-parameter negative binomial approaches. Random parameters enable the inclusion of unobserved heterogeneity in traffic accident data, which current popular methods with fixed parameters such as Poisson or negative binomial models cannot consider in terms of time variation or segment-specific effects. A continuous, unbalanced panel of accident histories for 208 four-way signalized intersections on national highways in Seoul was used to estimate a traffic accident occurrence model that considered traffic volumes and various geometric characteristics at intersections. The results revealed that the left-turn exclusive lanes and traffic volumes on minor roads had random parameters that affected the likelihood of accident frequencies differently; the other variables were found to significantly affect traffic safety at the intersections on the national highways as fixed parameters. Based on these results, it can be concluded that the same traffic safety facilities have different effects on traffic accidents on major and minor roads. The insights from this study suggest the need for a broader analysis of integrated guidelines for facilities that impact intersection accident propensities.
PURPOSES : This study analyzed explanatory variables, such as dangerous driving behaviors, in a negative binomial regression model, using the Digital Tachograph data of commercial vehicles, to assess the factors associated with freeway accidents.
METHODS : Fixed parameter and random parameter negative binomial regression models were constructed using freeway accident data of commercial vehicles from January 2007 to July 2018 on the Gyeongbu Expressway from West Ulsan Interchange to Gimcheon Junction.
RESULTS : Six explanatory variables (logarithm of average annual daily traffic, sunny, rainy, and snowy weather conditions, road curvature, and driving behaviors that included sudden stops) were found to impact the occurrence of freeway accidents significantly. Two of these variables (snowy weather conditions and sudden stops among dangerous driving behaviors) were analyzed as random parameters. These variables were shown as probabilistic variables that do not have a fixed impact on traffic accidents
CONCLUSIONS : The variables analyzed as random parameters should be carefully considered when the freeway operating authorities plan an improvement project for highway safety.
PURPOSES: The purpose of this study is to develop a crash prediction model at signalized intersections, which can capture the randomness and uncertainty of traffic accident forecasting in order to provide more precise results. METHODS: The authors propose a random parameter (RP) approach to overcome the limitation of the Count model that cannot consider the heterogeneity of the assigned locations or road sections. For the model’s development, 55 intersections located in the Daejeon metropolitan area were selected as the scope of the study, and panel data such as the number of crashes, traffic volume, and intersection geometry at each intersection were collected for the analysis. RESULTS: Based on the results of the RP negative binomial crash prediction model developed in this study, it was found that the independent variables such as the log form of average annual traffic volume, presence or absence of left-turn lanes on major roads, presence or absence of right-turn lanes on minor roads, and the number of crosswalks were statistically significant random parameters, and this showed that the variables have a heterogeneous influence on individual intersections. CONCLUSIONS : It was found that the RP model had a better fit to the data than the fixed parameters (FP) model since the RP model reflects the heterogeneity of the individual observations and captures the inconsistent and biased effects.
본 논문에서는 구조의 재료물성치와 기하학적 인수의 공간적 불확실성에 의한 구조 응답변화도 산정을 위한 정식화를 제안하였다. 정식화는 추계론적 유한요소해석의 해석법 중의 하나인 가중적분법을 기본으로 하였다. 해석 대상 구조는 전단변형을 포함하는 평판구조로서, 평판구조에 나타날 수 있는 불확실 인수로는 재료적 측면에서는 재료탄성계수와 포아송비가 있으며, 기하학적 인수로는 평판의 두께를 들 수 있다. 선형탄성 영역에서 선형성을 나타내는 재료탄성계수와는 달리 평판의 두께는 3차함수로 강성에 기여하고, 포아송비의 경우 분수의 형태로 강성에 기여하므로 직접적으로는 이를 추계론적 해석에 고려할 수 없다. 따라서 본 연구에서는 적합행렬내의 포아송비를 Taylor전개하여 사용하였다. 제안된 정식화에 의한 결과는 기존 연구결과는 물론 몬테카를로 해석에 의한 결과와도 비교하여 제안한 정식화를 검증하였다.
염해에 따라 발생하는 보수시기와 보수로 유지되는 내구수명은 보수비용 평가에 매우 중요한 요소이다. 일반적으로 사용하는 결정 론적 보수비용 평가는 사용기간의 연장에 따라 계단식으로 증가하게 되며, 보수로 인해 변동되는 내구수명의 변화를 고려하지 못한다. 본 연구 에서는 확률론적인 보수시기 및 비용을 평가하기 위해, 염해에 노출된 콘크리트 교각을 선정하였다. 두 가지 배합과 염화물에 노출된 외부 환 경조건을 고려하여 염화물 거동을 평가하였으며, 도출된 내구수명과 수명에 대한 확률변수를 변화시키면서 보수시기 및 비용 변화를 분석하 였다. 변동계수의 변화에 따른 보수회수는 큰 차이가 발생하지 않았으나, 초기의 내구수명 연장이 구조물의 보수시기 및 비용에 큰 영향을 미 치고 있었다. 또한 확률론적 보수비용 산정 모델은 결정론적 모델과 다르게 연속적인 보수비용이 평가되므로 목표내구수명에 따라 보수회수 를 감소시킬 수 있는 효과적인 기법임을 규명되었다.