In this paper, an external torque estimation problem in one-degree-of-freedom (1-DOF) flexible-joint robot equipped with a joint-torque sensor is revisited. Since a sensor torque from the jointtorque sensor is distorted by two dynamics having a spring connection, i.e., motor dynamics and link dynamics of a flexible-joint robot, a model-based estimation, rather than a simple linear spring model, should be required to extract external torques accurately. In this paper, an external torque estimation algorithm for a 1-DOF flexible-joint robot is proposed. This algorithm estimates both an actuating motor torque from the motor dynamics and an external link torque from the link dynamics simultaneously by utilizing the flexible-joint robot model and the Kalman filter estimation based on random-walk model. The basic structure of the proposed algorithm is explained, and the performance is investigated through a custom-designed experimental testbed for a vertical situation under gravity.
자연하천에 유입된 오염물질의 확산거동을 해석하기 위하여 통계학적인 개념을 이용하여 오염물질 입자의 운동을 묘사하는 2차원 Random-Walk 모형을 개발하였다. 개발된 모형을 검정한 결과, 고정격자의 개수를 증가시키거나 각각의 고정격자 내에 포함된 입자개수의 평균값을 증가시키면 해의 정밀도가 증가하는 것으로 나타났다. 본 모형의 현장 적용성을 검토하기 위하여 캐나다에 위치한 Grand River에서 수행된 정상상태의 색소실험 결과와 본 모형에 의한 계