검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, to improve the quality and construction performance of backfill materials for road excavation and restoration, the basic properties of rapid-hardening materials and stone sludge are analyzed to propose an optimal mix design. METHODS : To utilize rapid-hardening materials and stone sludge as controlled low-strength materials for pipeline construction in downtown areas, specimens were prepared for each compounding condition of fast-hardening materials. Flow, slump, and compressive strength tests were performed at various setting times. Subsequently, the physical and mechanical characteristics of the rapid-hardening backfill material for each mixing factor were analyzed. RESULTS : When ultrafast hardening cement and stone sludge are used, a setting time exceeding 30 min is required for a water–binder (W/B) ratio of 200% or higher. Considering the economic feasibility of ultrafast hardening cement, a W/B of 300% is considered the most suitable when high-performance superplasticizer and retarders are mixed. A flow test was performed on the rapid-hardening backfill material and the results show that if the mixing time exceeds 10 min, then the fluidity decreases rapidly, which necessitates a higher amount of superplasticizer. When ultrafast hardening cement is used, the initial strength (based on 4 h) is 0.7 MPa or higher for all formulations at a W/B ratio of 300%, and the compressive strength decreases slightly as the amount of superplasticizer is increased by 0.1%. CONCLUSIONS : Based on the fluidity and strength of the backfill material, which is composed of a rapid-hardening material and stone sludge, the most optimal performance is achieved when ultrafast-hardening cement with a W/B ratio of 300% is used in addition to a highperformance fluidizing agent 0.3% (wt./B) and retarder 0.2% (wt./B).
        4,000원