검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2015.10 구독 인증기관·개인회원 무료
        The ecdysis behavioral sequence in insects is a classic fixed action pattern (FAP) initiated by hormonal signaling. Ecdysis triggering hormones (ETHs) release the FAP through direct actions on the CNS. Here we present evidence implicating two groups of central ETH receptor (ETHR) neurons in scheduling the first two steps of the FAP: kinin (aka drosokinin, leucokinin) neurons regulate pre-ecdysis behavior and CAMB neurons (CCAP, AstCC, MIP, and Bursicon) initiate the switch to ecdysis behavior. Ablation of kinin neurons or altering levels of ETH receptor (ETHR) expression in these neurons modifies timing and intensity of pre-ecdysis behavior. Cell ablation or ETHR knockdown in CAMB neurons delays the switch to ecdysis, whereas overexpression of ETHR or expression of pertussis toxin in these neurons accelerates timing of the switch. Calcium dynamics in kinin neurons are temporally aligned with pre-ecdysis behavior, whereas activity of CAMB neurons coincides with the switch from pre-ecdysis to ecdysis. Activation of CCAP or CAMB neurons through temperature-sensitive TRPM8 gating is both necessary and sufficient to trigger ecdysis behavior. Our findings demonstrate that kinin and CAMB neurons are direct targets of ETH and play critical roles in scheduling successive behavioral steps in the ecdysis FAP. Furthermore, temporal organization of the FAP is likely a function of ETH receptor density in target neurons.
        2.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper deals with rescheduling on unrelated parallel-machines with compressible processing times, assuming that the arrival of a set of new jobs triggers rescheduling. It formulates this rescheduling problem as an assignment problem with a side constraint and proposes a heuristic to solve it. Computational tests evaluate the efficacy of the heuristic.
        4,000원