검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2014.07 서비스 종료(열람 제한)
        To reveal the linkage relationship between the Ms locus, a restorer-of-fertility gene for cytoplasmic male-sterility (CMS) caused by CMS-S cytoplasm in onion (Allium cepa L.) and previously reported molecular markers linked to the Ms locus, 11 recombinants selected from 4,273 segregating plants originating from the cross between male-sterile maternal and male-fertile paternal lines were analyzed. Results showed that genotypes of a codominant marker, jnurf12, were perfectly matched with the male-fertility phenotypes in all recombinants, but that this marker was not applicable in diverse breeding lines due to multiple band patterns. For the development of more reliable markers, a 12-bp indel was identified from the sequences which were obtained by genome walking, and was used to develop a simple PCR marker which was designated jnurf13. When 104 diverse breeding lines containing CMS-S cytoplasm were analyzed with the jnurf13 marker, male-fertility phenotypes of all breeding lines were perfectly matched with marker genotypes. To our surprise, phenotypes of 153 breeding lines containing CMS-T-like cytoplasm were also matched with genotypes of the jnurf13 marker which was linked to the Ms locus for the CMS-S system. Furthermore, phenotypes of four F2 populations containing CMS-T-like cytoplasm co-segregated perfectly with jnurf13 genotypes. Allelic segregation distortion was detected in two F2 populations using the jnurf13 maker. The results of this study were in conflict with a previous model for inheritance of fertility restoration in the CMS-T system. Therefore, we proposed a new model based on the data analyzed with the jnurf13 marker, which was in linkage disequilibrium with restorer-of-fertility genes for both CMS systems.
        2.
        2012.07 서비스 종료(열람 제한)
        Cytoplasmic male sterility caused by DCGMS (Dongbu cytoplasmic and genic male-sterility) cytoplasm and its nuclear restorer-of-fertility locus (Rfd1) with a linked molecular marker (A137) have been reported in radish (Raphanus sativus L.). To construct a linkage map of the Rfd1 locus, linked amplified fragment length polymorphism (AFLP) markers were screened using bulked segregant analysis. A 220-bp linked AFLP fragment sequence from radish showed homology with an Arabidopsis coding sequence. Using this Arabidopsis gene sequence, a simple PCR marker (A220) was developed. The A137 and A220 markers flanked the Rfd1 locus. Two homologous Arabidopsis genes with both marker sequences were positioned on Arabidopsis chromosome 3 with an interval of 2.4 Mb. To integrate the Rfd1 locus into a previously reported expressed sequence tag (EST)-simple sequence repeat (SSR) linkage map, the radish EST sequences located in three syntenic blocks within the 2.4-Mb interval were used to develop single nucleotide polymorphism (SNP) markers for tagging each block. The SNP marker in linkage group 2 co-segregated with male fertility in an F2 population. Using radish ESTs positioned in linkage group 2, five intron length polymorphism (ILP) markers and one cleaved amplified polymorphic sequence (CAPS) marker were developed and used to construct a linkage map of the Rfd1 locus. Two closely-linked markers delimited the Rfd1 locus within a 985-kb interval of Arabidopsis chromosome 3. Synteny between the radish and Arabidopsis genomes in the 985-kbp interval were used to develop three ILP and three CAPS markers. Two ILP markers further delimited the Rfd1 locus to a 220-kb interval of Arabidopsis chromosome 3.
        7.
        2009.09 KCI 등재 서비스 종료(열람 제한)
        Cytoplasmic male sterility (CMS) and fertility restoration have been utilized as valuable tools for F_1-hybrid seed production in many crops despite laborious breeding processes. Molecular markers for the selection of CMS-related genes help reduce the expenses and breeding times. A previously reported genomic region containing the Ppr-B gene, which is responsible for restoration of fertility and corresponds to the Rfo locus, was used to develop gene-based or so-called "functional" markers for allelic selection of the restorer-of-fertility gene (Rfo) in F_1-hybrid breeding of radish (Raphanus sativus L.) Polymorphic sequences among Rfo alleles of diverse breeding lines of radish were examined by sequencing the Ppr-B alleles. However, presence of Ppr-B homolog, designated as Ppr-D, interferes on specific PCR amplification of Ppr-B in certain breeding lines. The organization of Ppr-D, resolved by genome walking, revealed extended homology with Ppr-B even in the promoter region. Interestingly, PCR amplification of Ppr-D was repeatedly unsuccessful in certain breeding lines implying the lack of Ppr-D in these radishes. Ppr-B could only be successfully amplified for analysis through designing primers based on the sequences unique to Ppr-B that exclude interference from Ppr-D gene. Four variants of Rfo alleles were identified from 20 breeding lines. A combination of three molecular markers was developed in order to genotype the Rfo locus based on polymorphisms among four different variants. These markers will be useful in facilitating F_1-hybrid cultivar development in radish.