This study investigated the densification behavior of rhenium alloys including W-25 wt.%Re and Re-2W-1Ta (pure Re) during sintering. The dilatometry experiments were carried out to obtain the in-situ shrinkage in H2 atmo-sphere. The measured data was analyzed through shrinkage, strain rate and relative density, and then symmetricallytreated to construct the linearized form of master sintering curve (MSC) and MSC as a well-known and straightforwardapproach to describe the densification behavior during sintering. The densification behaviors for each material were ana-lyzed in many respects including apparent activation energy, densification parameter, and densification ratio. MSC witha minimal set of preliminary experiments can make the densification behavior to be characterized and predicted as wellas provide guideline to sinter cycle design. Considering the results of linearized form and MSC, it was confirmed thatthe W-25 wt.%Re compared to Pure Re is more easily densified at the relatively low temperature.