NaNb O370 mol%와 SrTi O330 mol%의 고용체인 (Na0.7S r0.3)( Ti0.3N b0.7) O3는 완전 고용에 의한 one phase의 페로브스카이트 구조를 형성하였으며 온도변화에 대한 유전 특성 측정 결과 100K 부근에서 완만한 유전 피크가 관찰되었다. 유전 피크를 전후한 상온과 12K에서 결정 구조 해석을 Rietveld법을 이용하여 수행하였으며 결과 상온에서는 단순 페로브스카이트의 a, b 그리고 c격자를 2배로 하는 격자를 격자 상수로 갖는 사방정계의 단위포를 형성하며 공간군은 Pmmm이였고, 12K로 온도를 낮추었을때 역시 단순 페로브스카이트의 a, b 그리고 c격자를 2배로 하는 격자를 격자 상수로 갖는 사방정계 단위포를 형성하나 공간군은 Pnma로 바뀌었다. 이러한 결정 구조의 변화는 c축 방향의 (Ti, Nb)-O-(Ti, Nb) 결합 각도에는 거의 변화가 없이 팔면체 중심의 (Ti, Nb)-O간의 결합 거리가 대칭성이 낮아지는 방향으로 변화하고 이로인해 산소 팔면체가 distortion되어 생기는 것이라는 것을 알 수 있었다. 따라서 l00K 부근에서의 완만한 유전 피크는 산소 팔면체의 distortion에 의한 구조상전이 결과라는 것을 알 수 있었다.수 있었다.다.
앨바이트 (albite) 와 석영, 그리고 미사장석 (microcline)과 앨바이트의 표준 혼합물 시료를 마련하여 이들에 대해 Rietveld refinement 방법을 사용하여 정량분석 및 결정구조분석을 실시하였다. Rietveld refinement 방법을 이용한 정량분석 결과의 표준편차는 앨바이트와 석영의 표준 혼합물 시료의 분석시에는 4 wt %, 미사장석과 앨바이트의 표준 혼합물 시료의 분석시에는 1 wt %인데 이것은 분리된 피크를 이용하는 기존의 XRD 정량분석법의 결과에 비해 훨씬 향상된 것이다. 또한, 정량분석과 동시에 얻어지는 각 구성광물의 단위포상수값도 정확하게 측정되는 것으로 검증되었다. 앨바이트와 석영의 표준 혼합물처럼 서로 다른 결정입자의 배열 특징을 가진 광물로 구성된 시료의 정량분석 결과에는 실제 무게비와 비교할 때 규칙적인 편이현상이 나타난다. 관찰된 결정입자의 배열현상지수(preferred orientation parameter)와 R-값은 결정입자의 특정방향으로의 배열효과가 미치는 영향이 Rietveld refinement 분석시에 완벽하게 계산될 수 없기 때문에 규칙적인 편이가 발생하는 것임을 지시해 준다. Dollase-March 및 Rietveld-Toraya 함수와 같은 결정입자의 배열현상 보정방법은 정확한 단위포상수 (unit-cell parameter)의 측정에는 도움을 주지만 정량분석결과를 향상시키는 데는 한계가 있는 것으로 보인다. 시료중에서 결정입자의 배열현상을 뚜렷히 보이는 광물의 무게비는 실제값보다 약간 크게 측정되는데, 이러한 현상은 결정입자의 외형 때문에 마운트된 시료표면에서 일어나는 효과에 의한 것으로 판단된다. Rietveld refinement 방법은 분말 X-선 회절도형의 피크들을 분리할 필요없이 회절도형전체를 한꺼번에 분석함으로써 피크의 중첩현상을 극복할 수 있고, 기존의 XRD 정량분석법에 비하여 입자의 배열현상의 문제점을 최소화시킬 수 있다. 또한 refinement된 정확한 단위포상수값이 회절도형의 비례상수와 함께 정량화하는 식에 사용되므로, Rietveld refinement를 이용한 정량분석법은 매우 정확한 광물학적 분석결과를 얻을 수 있는 방법으로 판단된다.