검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.10 구독 인증기관·개인회원 무료
        Viscosity is a fundamental physical property that is important in any system in which fluid movement occurs. In addition, most of the elements exist as ions in molten state in high-temperature molten salt, and electrical conductivity in such molten state is closely related to viscosity as a transport property. Molten salt reactor (MSR) and pyroprocess are representative processes dealing with high-temperature molten salts, actinide elements, and other radioactive materials. In MSR and pyroprocesses, the viscosity data must be provided as one of the fundamental physical property data required for safe process operations and countermeasures to severe accidents. In order to measure the viscosity of highly corrosive molten salt at high temperatures, we have built a in-house developed molten salt viscosity measurement system based on the Brookfield rotationary viscometer. We also developed a special correction technique to improve the accuracy of the viscosity measurement. In this study, the viscosity was measured at 500°C for NaCl-MgCl2 molten salt, which is selected as the base salt material of MSR system under development in Korea Atomic Energy Research Institute (KAERI), using our viscosity measurement system installed in a oxygen- and moisture-free Ar-atmosphere glovebox. Our viscosity measurement system was calibrated using a LiCl-KCl eutectic mixture with well-known viscosity value, and viscosity values obtained using our own correction methodology were compared with those of other conventional correction methods. In our further study, we plan to measure the NaCl-MgCl2-UCl3 system at various compositions and temperatures.
        2.
        2022.05 구독 인증기관·개인회원 무료
        Measurement of the physical properties of high-temperature molten salts is important for the efficient design and operation of molten salt reactors (MSR) in which the reactor coolant and nuclear fuel are in a homogeneous liquid state. Although some crucial physical properties such as viscosity, thermal conductivity, density, etc., have been drawing much attention, relative data, especially for molten chloride salts, are scarce. Thus, it is urgent to prepare the viscosity data as one of the key transport properties in thermal hydraulics analysis. However, it is not an easy task to measure the molten salt viscosity with high accuracy due to end effect, a small gap between the chamber and spindle, thermal expansion of the chamber and spindle at high temperatures in a rotational viscometer. Additionally, molten salt temperatures inside furnace are not uniform due to the large temperature gradient inside the chamber, and therefore the assumption of laminar condition can be violated. In this study, geometric factors, which can be a major interference in the torque measurement, were considered for the accurate determination of the viscosity. We established a high-temperature molten salt viscosity measurement system with Brookfield rotational viscometer. KNO3 molten salt was used as a model substance at a temperature range of 650–773 K. In-house designed spindles and chambers were made of corrosion-resistant alumina. Thermal expansion has a significant influence on the size and shape of the chamber and spindle. The effect of thermal expansion on the conventional correction method was examined with temperature variation and distribution. Gap size variation was also investigated in order to improve the accuracy.