검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2019.01 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 비슬산 이중편파 Radar 자료와, GPM 위성자료 및 21개 (Korea Meteorological Administration, KMA) 지상강우자료를 활용하여 분포형 강우-유출 모형(KIneMatic wave STOrm Runoff Model2, KIMSTORM2)을 이용해 남강댐 유역(2,293 km2)을 대상으로 유출해석을 수행 하였다. 모형의 유출 해석은 2016년 10월 5일 02:00∼09:00 총 8시간 동안 최대강우강도 33 mm/hr, 유역평균 총 강우량 82 mm이 발생한 태풍 차 바(CHABA)를 대상으로 하였으며, Radar 및 GPM 자료와 조건부합성(Conditional Merging, CM) 기법을 적용한 Radar (CM-corrected Radar) 및 GPM (CM-corrected GPM) 자료를 각각 활용하여 결과를 비교하였다. 이 때, 공간 강우자료에 유출 검보정은 남강댐 유역 내 3개의 수위관측 지점(산청, 창촌, 남강댐)을 대상으로 실시하였으며, 모형의 매개변수 초기토양수분함량, 지표와 하천의 Manning 조도계수를 이용하여 검보정하였다. 유출 결과는 결정계수(Determination coefficient, R2), Nash-Sutcliffe의 모형효율계수(NSE) 및 유출용적지수(Volume Conservation Index, VCI)를 산정하였다. 그 결과 CM-corrected Radar, GPM 자료가 평균 R2는 0.96, NSE의 경우 0.96, 유출용적지수(VCI)는 1.03으로 가장 우수한 결과를 나타내었다. 최종적으로 CM 기법을 이용한 보정된 공간분포자료는 기존의 자료에 비해 시공간적으로 정확한 홍수 예측에 사용 될 것으로 판단된다.
        2.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        One of main benefits of a dual polarization radar is improvement of quantitative rainfall estimation. In this paper, performance of two representative rainfall estimation methods for a dual polarization radar, JPOLE and CSU algorithms, have been compared by using data from a MOLIT S-band dual polarization radar. In addition, this paper presents evaluation of specific differential phase (Kdp) retrieval algorithm proposed by Lim et al. (2013). Current Kdp retrieval methods are based on range filtering technique or regression analysis. However, these methods can result in underestimating peak Kdp or negative values in convective regions, and fluctuated Kdp in low rain rate regions. To resolve these problems, this study applied the Kdp distribution method suggested by Lim et al. (2013) and evaluated by adopting new Kdp to JPOLE and CSU algorithms. Data were obtained from the Mt. Biseul radar of MOLIT for two rainfall events in 2012. Results of evaluation showed improvement of the peak Kdp and did not show fluctuation and negative Kdp values. Also, in heavy rain (daily rainfall > 80 mm), accumulated daily rainfall using new Kdp was closer to AWS observation data than that using legacy Kdp, but in light rain(daily rainfall < 80 mm), improvement was insignificant, because Kdp is used mostly in case of heavy rain rate of quantitative rainfall estimation algorithm.