In this study, the composition and morphology of deposited dust particles with size ranging from a few to tens ㎛ were investigated using SEM/EDX (scanning electron microscopy with energy dispersive x-ray spectrometer). Then deposited dust particles were classified into 8 groups: quartz, aluminosilicates, ca-rich, Fe/Ti oxide, carbon-rich, industrial particle, Fe-rich, and biogenic particle. The sources of deposited dust were high in the order of aluminosilicates 41% > biogenic 18% > Fe-rich 11% > quartz and C-rich 8% > industrial 7% > Fe/Ti oxide 5% > Ca-rich 1%. In particular, the ratio of biogenic particles was relatively high due to influence of pollen. The ratio of carbon-rich was 11% at YM site, 10% at MD site, and 4% at MO site, and the site close to the large emission source was high.
Coal-fired power plants emit various Particulate Matter(PM) at coal storage pile and ash landfill as well as the stack, and affect the surrounding environment. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray analyzer(FE-SEM/EDX) were used to develop identification factor and the physico-chemical analysis of PM emitted from a power plant. In this study, three samples of pulverized coal, bottom ash, and fly ash were analyzed. The pulverized coal was spherical particles in shape and the chemical composition of C-O-Si-Al and C/Si and C/Al ratios were 200~300 on average. The bottom ash was spherical or non-spherical particles in shape, chemical composition was O-C-Si-Al-Fe-Ca and C/Si and C/Al ratios were 4.3±4.6 and 8.8±10.0. The fly ash was spherical particles in shape, chemical composition was O-Si-Ai-C-Fe-Ca and C/Si and C/Al ratios were 0.5±0.2 and 0.8±0.5.
This study identified physical characteristics and aerosol particle sources of PM10 and PM2.5 in the industrial complex of Busan Metropolitan City, Korea. Samples of PM10, PM2.5 and also soil, were collected in several areas during the year of 2012 to investigate elemental composition. A URG cyclone sampler was used for collection. The samples were collected according to each experimental condition, and the analysis method of SEM-EDX was used to determine the concentration of each metallic element. The comparative analysis indicated that their mass concentration ranged from 1% to 3%. The elements in the industrial region that were above 10% were Si, Al, Fe, and Ca. Those below 5% were Na, Mg, and S. The remaining elements (1% of total mass) consisted of elements such as Ni, Co, Br and Pb. Finally, a statistical tool was applied to the elemental results to identify each source for the industrial region. From a principal components analysis (SPSS, Ver 20.0) performed to analyze the possible sources of PM10 in the industrial region, five main factors were determined. Factor 1 (Si, Al), which accounted for 15.8% of the total variance, was mostly affected by soil and dust from manufacturing facilities nearby, Factors 2 (Cu, Ni), 3 (Zn, Pb), and 4 (Mn, Fe), which also accounted for some of variance, were mainly related to iron, non-ferrous metals, and other industrial manufacturing sources. Also, five factors determined to access possible sources of PM2.5, Factor 1 (Na, S), accounted for 13.5% of the total variance and was affected by sea-salt particles and fuel incineration sources, and Factors 2 (Ti, Mn), 3 (Pb, Cl), 4 (K, Al) also explained significant proportions of the variance. Theses factors mean that the PM2.5 emission sources may be considered as sources of incineration, and metals, and non-ferrous manufacturing industries.