해수의 탁도는 수중의 부유 물질이나 생물에 의해 혼탁해지는 정도를 정량적으로 나타낸 변수로 연안 환경을 이해하는 데 중요한 해양 변수이다. 한반도의 서해안은 얕은 수심, 조류, 하천 유래 부유 퇴적물의 영향으로 광학적으로 강한 시공간 변동성을 가지고 있어서 인공위성 자료를 활용한 탁도 산출은 해양학적으로 다양한 활용 가능성을 가 진다. 본 연구에서는 경기만을 연구 해역으로 설정하고, 해수의 탁도 산출 알고리즘 개발을 위하여 2018년부터 2023년 7월까지 해양환경공단의 해양수질자동측정망 기반 현장 관측 탁도 자료와 Sentinel-2 인공위성의 MSI (Multi-Spectral Instrument) Level-2 자료를 사용하여 위성-현장 관측치 사이의 일치점 데이터베이스를 생산하였다. 이전의 다양한 탁도 산출식을 조사하여 정확도를 상호 비교하였고 경기만 해역에서 최적 파장대를 조사하고 분석하였다. 그 결과 녹색 밴드 (560 nm)를 기반으로 한 탁도 산출식이 0.08 NTU의 상대적으로 작은 평균 제곱근 오차를 보였다. 인공위성 광학 자료 를 기반으로 산출된 탁도는 해수의 광학적 특성과 연안 환경의 변동성을 이해하고 다양한 해상 활동에 도움을 줄 수 있을 것으로 기대된다.
Global warming affects forests and their ecology. Diversity in the forest is a buffer that reduces the damage due to global warming. Mixed forests are ecologically more valuable as versatile habitats and are effective in preventing landslides. In Korea, most forests were created by simple afforestation with trees of evergreen species. Typically, evergreen trees are shallow-rooted, and deciduous trees are deep-rooted. Mixed forest tree roots grip the soil effectively, which reduces the occurrence of landslides. Therefore, improving the distribution of tree types is essential to reduce damage due to global warming. For this improvement, the investigation of tree types of the forest is needed. However, determining the tree type distribution of forests that are spread over wide areas is labor-intensive and time-consuming. This study suggests effective methods for determining the distribution of tree types in a forest that is spread across a relatively wide area. Using normalized difference vegetation index and RGB images from unmanned aerial vehicles, each evergreen and deciduous tree, and grassland area can be distinguished. The distinguished image determines the distribution of tree type. This method is effective compared to directly determining the tree type distribution in the forest by the use of manpower. The data from these methods could be applied to plan a mixed forest or to prepare for future damage due to global warming.
The increased frequency and intensity of wildfires can cause damages to the ecosystem and the atmospheric environment. Rapid identification of the wildfire damages is also important for establishing forest restoration, budget planning, and human resources allocation. Because the wildfires need to be examined for vast areas, satellite remote sensing has been adopted as an effective method. Many studies for the detection of wildfires and the analysis of burn severity have been conducted using mid- and high-resolution images. However, they had difficulties in the sensitivity problem of NBR (Normalized Burn Ratio) for multi-temporal images. This paper describes the feasibility of the detection and classification of wildfire burn severity using Sentinel-2 images with K-means and ISODATA (Iterative Self-Organizing Data Analysis Techniques Algorithm) methods for a case of the Andong fire in April 2020. The result can be a reference to the appropriate classification of large-scale wildfire severity and decision-making for forest restoration planning.