본 연구에서는 복하천 중상류 유역에 대해 준분포형 유역수문모형 SWAT-K를 적용하여 자연유량을 산정하고, 하천유량 변화를 야기하는 지하수 양수량, 하천수 취수량, 하수처리수 방류량 등의 인위적인 요인으로 인한 영향을 평가하였다. 2006년부터 2013년까지의 자연상태의 하천유량을 모의한 결과 최저유량은 1.7 m3/s, 평균유량은 26.2 m3/s, 갈수량은 약 2.0 m3/s로 산정되었다. 지하수 이용, 하천수 취수, 하수처리수 방류 등 각각의 인위적 요인에 의한 하천유황의 상대적 변화를 분석한 결과, 갈수량은 지하수 양수로 인해 자연상태에 비해 약 34% 감소, 하수처리수 방류와 하천수 취수의 복합 영향으로 인해 약 15% 증가, 지하수 양수, 하수처리수 방류와 하천수 취수의 복합 영향으로 약 19% 만큼 감소하는
것으로 분석되었다. 복하천 본류를 따라 모의된 자연유량 자료를 이용하여 비유량의 거동 특성을 분석한 결과, 중상류 유역에서는 지배면적이 증가할수록 비풍수량, 비평수량, 비저수량, 비갈수량 등의 값이 증가하는 경향을 나타내었으며, 하류부로 내려오면서 지배면적이 약 180 km2 이상에서부터는 면적과 상관없이 거의 일정한 비유량 값을 나타내는 것으로 분석되었다.
In this study, a method of simulating ephemeral stream runoff characteristics in Jeju watershed is newly suggested. The process based conceptual-physical scheme is established based on the SWAT-K and applied to Cheonmi-cheon watershed which shows the typical pattern of ephemeral stream runoff characteristics. For the proper simulation of this runoff, the intermediate flow and baseflow are controlled to make downward percolation should be dominant. The result showed that surface runoff simulated by using the modified scheme showed good agreement with observed runoff data. In addition, it was found that the estimated runoff directly affected the groundwater recharge rate. This conceptual model should be continuously progressed including rainfall interception, spatially estimated evapotranspiration and so forth for the reasonable simulation of the hydrologic characteristics in Jeju island.
In this study, the method of estimating hydrologic information (water depth, submerged period etc.) on the proper selection of construction point and scale as well as vegetation type suggested for the design of natural riparian rehabilitation structure. Long-term comprehensive watershed model SWAT-K(Korea) was applied to this purpose. Flow duration analysis was conducted to analyze the hydrologic characteristics of Pyungchang watershed at which the 'bangtul' construction method was tested. For this purpose 20 years (1989-2008) rainfall runoff analysis was carried out. Based on the simulated daily streamflow data, flow duration curve was made to analyze the flow characteristics, and the water depth hydrograph was made to analyze the water depth distribution at the cross section. Finally, the information for the selection of proper vegetation according to the submerged period is suggested.
In Jeju island, runoff has frequently happened when the rainfall depth is over a threshold value. To simulated this characteristic rainfall-runoff model structure has to be modified. In this study, the TRSM (Threshold Runoff Simulation Method) was developed to overcome the limitations of SWAT in applying to the hydrologic characteristics of Jeju island. When the precipitation and soil water are less than threshold value, we revised the SWAT routine not to make surface/lateral or groundwater discharge. For Hancheon watershed, the threshold value was set as 80% of soil water through the analysis of rainfall-runoff relationship. Through the simulation of test watershed, it was proven that TRSM performed much better in simulating pulse type stream flow for the Hancheon watershed.
SWAT-K model is a modified version of the original SWAT, and is known to more accurately estimate the streamflows and pollutant loadings in Korean watersheds. In this study, its hydrological components were compared with those of HSPF in order to analyse the differences in total runoff including evapotranspiration(ET), surface flow, lateral flow and groundwater flow from the Chungju Dam watershed during 2000~2006. Averaged annual runoff with SWAT-K overestimated by 1%, and HSPF underestimated it by 3% than observed runoff. Determination coefficients(R2) for observed and simulated daily streamflows by both the models were relatively good(0.80 by SWAT-K and 0.82 by HSPF). Potential ET and actual ET by HSPF were lower in winter, but similar or higher than those by SWAT-K. And though there were some differences in lateral and groundwater flows by two models because of the differences in hydrological algorithms, the results were to be reasonable. From the results, it was suggested that we should utilize a proper model considering the characteristics of study area and purposes of the model application because the simulated results from same input data could be different with models used. Also we should develop a novel model appropriate to Korean watersheds by enhancing limitations of the existing models in the future.
In this study, long term semi distributed hydrologic model SWAT-K(Korea) is applied to the Seolma- Cheon watershed to analyze the hydrological components. Seolma-Cheon watershed has been operated as the test watershed of Korea Institute of Constrcution Technology for 13 years. Therefore it has an enough hydrologic data to analyze the hydrologic characteristics of small watershed. Especially, for the proper runoff analysis of steep watershed, calibration is performed reflecting the regression equation of slope and slope length. The simulated discharge shows good agreement with the observed one and the simulated evapotranspiration and groundwater discharge also show satisfactory results. Finally we presents the ratio of major hydrologic components for 3 years with those obsrved ones. This study is the basic research for future analyses such as relationship between hydrologic components and vegetation, watershed sediment nonpoint sources discharge etc.