검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.11 구독 인증기관·개인회원 무료
        In nuclear facilities, a graded approach is applied to achieve safety effectively and efficiently. It means that the structures, systems, and components (SSCs) that are important to safety should be assured to be high quality. Accordingly, SSCs that consist of nuclear facilities should be classified with respect to their safety importance as several classes, so that the requirements of quality assurance relevant to the designing, manufacturing, testing, maintenance, etc. can be applied. Guidance for the safety classification of SSCs consisting of nuclear power plants and radioactive waste management facilities was developed by U.S.NRC and IAEA. Especially, in guidance for nuclear power plants, safety significance can be evaluated as following details. The single SSC that mitigates or/and prevents the radiological consequence or hazard was assumed to be failure or malfunction as the initiating event/accident occurred and the following radiological consequence was evaluated. Considering both the consequence and frequency of the occurrence of the initiating event/accident, the safety significance of each SSC can be evaluated. Based on the evaluated safety significance, a safety class can be assigned. The guidance for the safety classification of the spent nuclear fuel dry storage systems (DSS) was also developed in the United States (NUREG/CR-6407) and the U.S.NRC acknowledges the application of it to the safety classification of DSS in the United States. Also, worldwide including the KOREA, that guidance has been applied to several DSSs. However, the guidance does not include the methodology for classifying the safety or the evaluated safety significance of each SSC, and the classification criteria are not based on quantitative safety significance but are expressed somewhat qualitatively. Vendors of DSS may have difficulties to apply this guidance appropriately due to the different design characteristics of DSSs. Therefore, the purpose of this study is to evaluate the safety significance of representative SSCs in DSS. A framework was established to evaluate the safety significance of SSCs performing safety functions related to radiation shielding and confinement of radioactive materials. Furthermore, the framework was applied to the test case.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Once systems, structures and components (SSCs) of dry storage systems are classified with respect to safety function or safety significance (i.e., safety classification), appropriate engineering rules can be applied to ensure that they are designed, manufactured, maintained, managed (e.g. aging management) etc. In Unites States, the systems, structures and components (SSCs) consisting DSSs are classified into two or several grades (i.e., class A, B and C or not important to safety, and important to safety (ITS) or not important to safety (NITS)) with respect to intended safety function and safety significance. This classification methods were based on Regulatory Guide 7.10 (i.e., guidance for use in developing quality assurance programs for packaging). Also, in Korea, SSCs of DSSs should be classified into ITS and NITS in much the same as method based on Regulatory Guide 7.10. In that guidance, for providing graded approach to manage the SSCs of packaging, they were trying to classifying SSCs in accordance with radiological consequences. But there was limitations that the provided classification criteria was still qualitative, so that it was not enough for managing the SSCs according to graded approach. On the other hand, in some other nuclear facilities (i.e., nuclear power plant, radioactive waste management facility and disposal facility etc.), quantitative criteria relevant to radiological consequence (i.e., radiation doses to workers or to the public) or inventory of radioactivity are existed so that it can be applied for classifying safety classes. In summary, the study on the application safety classification that applied quantitative criteria to perform safety classification of SSCs in DSS is inadequate or insufficient. The purpose of this study is proposing the preliminary framework for estimating safety significance of SSCs in DSS which can be utilized in our further advanced studies. In this study, a framework was established to estimate the safety significance of SSCs related to radiation shielding and confinement using MCNP® 6.2 and Microsoft Excel. Referring to the methodology of IAEA Specific Safety Guide 30, we assumed severity for failures of components that could lead to degradation of the SSC’s performance. The safety class of SSC was decided based on the impact of SSC’s failure on consequences.