PURPOSES: In order to evaluate a crack resistance at cold joint, sealing tape was adopted to apply at cold joint instead of typical tack coat material(RSC-4). The sealing tape was made by hot sealing material. The crack resistance as function of environmental and traffic loading was measured with visual observation.
METHODS : In this study, the crack resistance was evaluated as function of environmental and traffic loading. The freeze-thaw method was adopted for environmental loading of asphalt pavement. condition. The damage of cold joint under freeze-thaw action is initiated by ice expansion load and accelerated by the interfacial damage between new and old asphalt pavement. The traffic loading was applied with wheel tracking machine on the cold joint area of the asphalt pavement for 3 hours at 25℃. The evaluation of crack resistance was measured with visual observation. The freeze-thaw results shows that the sealing tape was significantly increased the crack resistance based on.
RESULTS : To estimate the crack resistance at cold joint area due to the environmental loading, the Freeze-thaw test was conducted by exposing the product to freezing temperature(approximately -18℃) for 24 hours, and then allowing it to thaw at 60℃ for 24 hours. The tack coat material(RSC-4) was debonded after 21 cycles of the Freeze-thaw test. The first crack was observed after 14 freeze-thaw cycle with RSC-4 material. But, the sealing tape was not debonded after 24 cycle test. Also, the sealing tape shows the better performance of the crack resistance under the traffic loading with wheel track test. The crack was generated the under traffic loading with RSC-4(tack coating), however, the crack was not shown with sealing tape. It indicates that the sealing tape has a strong resistance of tensile stress due to traffic loading. CONCLUSIONS: Based on limited laboratory test result, a performance of crack resistance using the sealing tape is better than that of general tack coat material(RSC-4). It means that the sealing tape is possible to extend a pavement service life because the crack, one of the main pavement distresses, will be delayed. Keywords Sealing Tape, Crack Resistance, Freeze-Thaw, Tensile Adhesion
Asphalt pavement is covered over 90% of Korea road network. There are various causes for damage to asphalt pavement such as crack, stripping, and joints et al. A longitudinal joint occurs in an asphalt pavement when a new batch of hot-mix asphalt (HMA) is laid adjacent to an existing lane for maintenance of asphalt road. It is required to pave the width of a road in multiple lanes because paving the full width of the pavement in a single pass is usually impossible. The durability of longitudinal joints in asphalt pavements is strongly related with the pavement service life. This longitudinal joint is generated attachment sites where the old pavement surface and the new pavement surface are adhered to each other. In the short period of time, early cracks are generated due to the adherence failure of the new and old pavement. Rainwater penetrates into cracks at the time of rainfall. The cracks are enlarged to be connected by labeling and pothole generation, resulting in durability of the pavement deterioration of its service life. Therefore, there is a desperate need for a preventive material that can prevent the expansion of cracks in the longitudinal joint. Compare performance sealing tape with tack coating material, the research team is adopted freeze-thaw and wheel tracking loading test methods. The sealing tape shows the better performance than tack coating material under traffic loading and freeze-thawing test.