This study performed the seismic response analysis of an LNG storage tank supported by a disconnected piled raft foundation (DPRF) with a load transfer platform (LTP). For this purpose, a precise analytical model with simultaneous consideration of Fluid-Structure Interaction (FSI) and Soil-Structure Interaction (SSI) was used. The effect of the LTP characteristics (thickness, stiffness) of the DPRF system on the seismic response of the superstructure (inner and outer tanks) and piles was analyzed. The analytical results were compared with the response of the piled raft foundation (PRF) system. The following conclusions can be drawn from the numerical results: (1) The DPRF system has a smaller bending moment and axial force at the head of the pile than the PRF system, even if the thickness and stiffness of the LTP change; (2) The DPRF system has a slight stiffness of the LTP and the superstructure member force can increase with increasing thickness. This is because as the stiffness of the LTP decreases and the thickness increases, the natural frequency of the LTP becomes closer to the natural frequency of the superstructure, which may affect the response of the superstructure. Therefore, when applying the DPRF system, it is recommended that the sensitivity analysis of the seismic response to the thickness and stiffness of the LTP must be performed.
지진동에 의한 건물의 내진성능은 건물 자체가 보유하고 있는 내력.변형능력뿐만 아니라, 지반상태를 포함한 기초구조의 진동특성, 즉 건물과 기초구조의 동적상호작용을 고려하여 종합적으로 평가해야 한다는 것은 과거의 피해지진의 경험에서 널리 알려져 있다. 이러한 사실은 최근 세계각지에서 발생한 대지진, 1993년 홋카이도난세오키 지진(일본), 1994년 Northridge지진(미국), 1995년 효고켄 남부지진(일본), 1999년지지 지진(대만) 등에서도 입증되었다. 한편, 건축물 자체의 내진성능 평가에 관한 연구는 활발히 진행되어 왔으며, 또한 수많은 건물에 적용되었다. 그러나, 건물과 기초구조의 동적상호작용을 고려한 내진성능평가에 관한 연구는 부족하며, 특히 건물과 말뚝기초의 동적상호작용을 고려한 철근콘크리트 건물의 내진성능 평가에 관한 연구는 더욱 부족한 것이 현재의 실정이다. 본 연구는 철근콘크리트 건물자체 및 지반상태를 포함한 말뚝기초의 비선형거동을 고려한 지진응답해석법을 제안하였다. 이 해석법은 실제 지진에 의하여 말뚝기초부에 피해를 입은 철근콘크리트 건물에 적용하였으며, 해석결과와 지진피해와의 관계를 비교ㆍ검토하여, 본 연구에서 제안한 해석기법의 적용가능성을 검증하였다. 본 연구는 말뚝기초를 가지는 철근콘크리트 건물의 내진성능예측의 기본적인 자료로서 활용 가능하다고 사료된다.
실무에서 교량 교각의 내진해석을 수행할 때 계산의 편의와 보수적인 설계를 위하여 기초의 연성을 고려하지 않고 지반면을 고정단으로 가정하여 해석하는 경우가 많다. 이러한 고정단 모델은 대부분의 경우 설계력 측면에서 매우 보수적인 결과를 주므로, 최근 기초의 연성을 고려하여 현실적으로 교각 기초를 모델링하려는 연구가 수행되고 있다. 본 연구에서는 기초연성의 모델링 방법, 입력응답스펙트럼의 종류 그리고 지반조건을 달리하여 응답스펙트럼 해석을 수행하였다. 수치해석을 통하여 교각에 발생하는 전단력, 모멘트 그리고 변위를 비교하여 기초의 연성을 고려하는 기법과 지반 및 지진파 특성들이 해석결과에 미치는 영향을 분석하였다. 대부분의 경우 고정단 모델에서 큰 전단력과 모멘트가 발생하였지만, 연약 점성토층에 장주기 지진파가 작용하는 특수한 경우에는 기초의 연성을 고려한 모델에서 고정단 모델보다 큰 전단력과 모멘트가 발생하였다. 또한 기초의 연성을 고려하는 여러 모델들의 해석결과를 지반-구조물 동적 상호작용을 고려한 정밀 동해석 결과와 비교하여 그들의 적용성을 평가하였다.
교량 구성요소의 설계지진력은 현행 국내 도로교설계기준에 의하면 설계지진을 가하여 얻어진 탄성지진력을 구조형식에 따른 응답수정계수로 나눔으로써 결정되어진다. 말뚝기초가 채택된 교량시스템의 탄성지진력의 크기는 말뚝기초의 모형화 방법에 따라 크게 달라질 수 있다. 이 논문에서는 근사적이고 실용적인 말뚝기초의 모형화 기법을 제시하였다. 이 모형화 기법에서는 말뚝기초의 강도를 횡방향으로 반복하중을 가진 현장시험으로 얻은 말뚝-지반의 상호작용이 고려된 지반반력-변위 곡선을 이용한 말뚝의 수평방향 강도와 탄성 축변형은 물론 선단지지력 및 주변마찰력을 고려한 말뚝의 수직방향 강도로 나타내는 것이다. 예제 교량의 해석을 수행하여 제시된 절차가 타당성있고 적용 가능한 교량의 지진응답해석용 말뚝기초의 모형화 기법임을 검증하였다.