Bypass line과 Catalyst를 공간적으로 결합한 Bypass 일체형 탈질설비를 제안하였다. 탈질설비 내부에 설치되는 Bypass의 개폐장치 의 형태에 따른 Catalyst로의 유동 변화를 확인하기 위하여 상용프로그램인 Ansys Fluent를 사용하여 탈질설비를 모델링하고 시뮬레이션을 구성하였다. 탈질설비 내의 Catalyst로 인한 계산시간과 Mesh의 수를 줄이기 위해 Porous media방식으로 Catalyst를 모델링하였다. Catalyst로 의 입구각도와 Bypass 개폐장치의 크기를 변화시키면서 시뮬레이션을 수행하고 시뮬레이션의 결과로 Catalyst로의 유동 평균속도와 균일도의 변화를 확인하였다.
In the present study, potassium and caesium doped Ag/ catalysts were synthesized by simple wet impregnation method and evaluated for selective catalytic reduction (SCR) of NOx using methane. TEM analysis and diffraction patterns demonstrated the finely dispersed Ag particles. BET surface measurements reveal that the prepared materials have moderate to high surface area and the metal amount found from ICP analysis was well matching with the theoretical loadings. The synthesized K-Ag/ and Cs-Ag/ catalysts exhibited a promotional effect on deNOx activity in the presence of and . The long-term isothermal studies at under oxygen rich condition showed the superior catalytic properties of the both alkali promoted samples. The crucial catalytic properties of materials are attributed to NO adsorption properties detected by the NO TPD.
V2O5/TiO2 catalysts promoted with Mn were prepared and tested for selective catalytic reduction of NOx in NH3. The effects of promoter content, degree of catalyst loading were investigated for NOx activity while changing temperatures, mole ratio, space velocity and O2 concentration. Among the various V2O5 catalysts having different metal loadings, V2O5(1 wt.%) catalyst showed the highest activity(98%) under wide temperature range of 200-250℃. When the V2O5 catalyst was further modified with 5 wt.% Mn as a promoter, the highest activity(90-47%) was obtained over the low temperature windows of 100-200℃. From Mn-V2O5/TiO2, it was found that by addition of 5 wt.% Mn on V2O5/TiO2 catalyst, reduction activity of catalyst was improved, which resulted in the increase of catalytic activity and NOx reduction. According to the results, NOx removal decreased for 10%, but the reaction temperature down to 100℃.