검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The paper deals with a comparative study of equilibrium and kinetics of phenol adsorption from aqueous solutions by means of commercial activated carbons and semi-cokes, differing in the nature of feedstock, production technology and structural characteristics. The main adsorption parameters are calculated with the usage of Langmuir and Dubinin–Radushkevich equations. The change in the characteristics of the structure and state of the surface of semi-coke P2 as a result of modification is estimated. It was found that phenol adsorption kinetics is described by a pseudo-second-order model. The adsorption rate constants and the coefficient of external diffusion mass transfer are calculated. It is proved that phenol extraction from aqueous solutions presents a mixed-diffusion nature, and the process rate is limited by external mass transfer for 13 min for SKD-515 and 22 min for ABG. To increase the adsorption capacity, the oxidative modification of the semi-coke P2 was carried out. Considering the economic and technological aspects, ABG semi-coke is recognized as a promising sorbent for phenol extraction from aqueous media.
        4,000원
        2.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Various semi-cokes were obtained from medium–low-temperature pyrolysis of Shenmu long flame coal. The combustion characteristic index and CO2 gasification reactivity of semi-cokes were measured and analyzed using thermogravimetry analysis. The influence of particle size on CO2 gasification reactivities of these semi-cokes was studied. In addition, the Brunauer–Emmett–Teller surface area (SBET), carbon material structure order and carbon crystalline structure were examined by N2 adsorption, Raman spectroscopy and powder X-ray diffraction. All of these properties were used to evaluate the CO2 gasification reactivity of these semi-cokes. The results show that the gasification reactivity of semi-cokes decreases with an increasing crystallinity and structure order. Surface area of the pores is proportional to the reactivity of the semi-coke; the greater the surface area, the faster the gasification reaction rate.
        4,000원