국내 섬 지역은 감독 부실과 관광 등으로 인해 산림 훼손이 심각한 상황이다. 한반도 서남해안 지역의 난온대 기후대 원식생은 상록활엽수림이라서, 이곳을 원식생으로 복원이 바람직하다. 따라서 본 연구에서는 전남의 섬 지역 산지를 대상으로, 현존 상록활엽수림의 환경 요인을 분석하여 상록활엽수림 북원 적합지를 도출하였다. 이를 위해 딥러닝(deep learning) 알고리즘을 이용하여 Sentinel-2 위성영상에서 연구 대상지의 식생 유형을 6가지로 분류하였고, 분류된 식생 유형의 위치 및 지형, 기후 속성을 측정하여 상록활엽수림의 내성 범위(tolerance range)를 분석하였다. 분석 결과, 현존 상록활엽수림은 인간의 간섭이 적은, 고도가 높고 경사가 급한 지역에 상대적으로 높은 비율로 분포하였다. 이와 같은 인위적인 간섭으로 현존 상록활엽수림은 타 식생 유형보다 오히려 연평균기온이 낮은 곳에 분포하는 경향을 보였는데, 이는 고도가 높을수록 기온은 낮아지기 때문이다. 여러 환경 요인 중 인간의 간섭에 따른 영향을 배제하고, 상록활엽수림의 복원 적합지를 파악할 수 있는 환경 요인에는 위도와 최한월 평균기온(1월)이 있었다. 상록활엽수림 내성 범위 분석 결과, 위도 34.7° 이남, 최한월평균기온 1.7°C 이상인 지역에 주로 생육하는 것으로 나타나, 이 조건에 맞는 지역을 상록활엽수림 복원 적합지로 예측하였다. 전남 섬 지역의 산지 중 상록활엽수림 복원 적합지 면적은 614.5㎢로 전체 연구 대상지의 59.0%, 연구 대상지 중 농경지 등을 제외한 산림 식생 지역의 73.4%를 차지하였다. 본 연구의 결과를 바탕으로 향후 구체적인 섬 지역 산림복원계획과 예산을 수립해야 할 것이다.
Global warming affects forests and their ecology. Diversity in the forest is a buffer that reduces the damage due to global warming. Mixed forests are ecologically more valuable as versatile habitats and are effective in preventing landslides. In Korea, most forests were created by simple afforestation with trees of evergreen species. Typically, evergreen trees are shallow-rooted, and deciduous trees are deep-rooted. Mixed forest tree roots grip the soil effectively, which reduces the occurrence of landslides. Therefore, improving the distribution of tree types is essential to reduce damage due to global warming. For this improvement, the investigation of tree types of the forest is needed. However, determining the tree type distribution of forests that are spread over wide areas is labor-intensive and time-consuming. This study suggests effective methods for determining the distribution of tree types in a forest that is spread across a relatively wide area. Using normalized difference vegetation index and RGB images from unmanned aerial vehicles, each evergreen and deciduous tree, and grassland area can be distinguished. The distinguished image determines the distribution of tree type. This method is effective compared to directly determining the tree type distribution in the forest by the use of manpower. The data from these methods could be applied to plan a mixed forest or to prepare for future damage due to global warming.