This study examined the simultaneous application of absorption and adsorption by adding granular activated carbon to tap water (Absorbent-A) and sodium hypochlorite (Absorbent-B), with the aim of improving the removal performance of gaseous acetaldehyde applying hybrid process. Prior to the main experiment, preliminary tests were conducted to assess the effects of HOCl concentration (50~150 ppm) and reactor temperature (25~35oC). In the main experiment, the removal performance under activated carbon-added conditions was compared using the concentration ratio (Co/ Ci) and its rate of change over time. As a result, the addition of activated carbon led to a more gradual saturation and concentration change compared to the non-addition condition, with the addition showing the most stable trend. This study suggests a basic reference for improving the performance of conventional absorbents enhancing the durability and efficiency with the activated carbon as an auxiliary material for future field applications.
Acidic and basic mixtures of odorous compounds are commonly emitted from various sources, and, in an absorption process, pH conditions in the liquid phase significantly affect the performance. In this study, the effect of pH on mass transfer in a bubble column reactor was evaluated using hydrogen sulfide and ammonia as a model mixture. Their mass transfer coefficients were then calculated. Furthermore, the total mass transfer coefficients as a function of pH were evaluated, and the experimental data were fitted into an empirical equation using dimensionless numbers. The mass transfer rates of hydrogen sulfide, the non-ionic form, increased dramatically with increasing pHs, while those of ammonia were almost unchanged because of its high solubility. As a result, a favorable pH condition for less soluble compounds must be selected to achieve high absorption capacity. The total mass transfer rates, which took into account pH effects as well as all the non-ionic and ionic constituents together, were found to be from 2.2 to 2.4 × 10−3 min−1 for hydrogen sulfide and ammonia, respectively, and they were almost constant at different pHs. The empirical equations, which were derived to obtain the best fit for the total mass transfer rates, implied that a method to increase diffusivity of each compound should be applied to improve overall mass transfer. In addition, when using the empirical equation, a mass transfer coefficient at a given set of pH and operating conditions can be calculated and used to design a water scrubbing process.
The experiment was performed using the cleaning precipitator To investigate the absorption efficiency of the SOX/NOX of the aqueous ammonia solution. Concentration of the cleaning liquid is 0.1, 0.5, and 1.0% with increasing absorption efficiency has improved. However, the reaction shown only a difference in time. Absorption efficiency has improved in accordance with the gas residence time. When the direction of the same gas and the cleaning liquid is determined that there is the effect of increasing the residence time. The relative impact of SOX and NOX is this likely to react slower than SOX/NOX. The yield is determined to require