검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 55

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, hybrid devices were developed to simultaneously remove odor and particulate matter (PM) emitted during meat grilling, and their performance was evaluated. A ceramic filter system and surfactant microbubble plasma system were used to reduce particulate matter. For odor reduction, an electro-oxidation system, an ozone-active catalytic oxidation system, and a multi-adsorption filter system were used. By combining the above particulate matter reduction and odor reduction devices, the reduction efficiency of odor and particulate matter generated during meat grilling was analyzed. As a result, most of the six combined device conditions showed a reduction efficiency of more than 90% for particulate matter. The combined odor also showed a high reduction efficiency of less than 200 times the emission concentration standard. This study also evaluated 22 types of odorous substances, of which ammonia (NH3) and hydrogen sulfide (H2S) showed removal efficiencies of more than 99%. Therefore, it is expected that the combination of these technologies can be used and applied directly to the sites where meat grilling restaurants are located to effectively contribute to the simultaneous reduction of particulate matter and odor.
        4,500원
        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Quality standards of activated carbon for gas-phase applications have been deleted from the Korean national standard list since 2007, and the iodine adsorption test is the only measure currently used for quality assurance. This study was performed to propose a suitable test method and a quality standard for gas-phase activated carbon. The "1/2 saturated vapor adsorption" test has been developed as a simple and convenient method to determine the adsorption capacity of activated carbon. In this study, the developed test method was evaluated using model VOCs including toluene, methyl ethyl ketone (MEK), and ethyl acetate (EA). A virgin activated carbon revealed adsorption capacities of 344mg/g, 322mg/g, and 328mg/g for toluene, EA, and MEK, respectively, and the adsorption capacity for a mixture of the three VOCs was 334 mg/g. When a regenerated activated carbon was applied, the adsorption capacities dramatically decreased to 62 mg/g, 52 mg/g, and 61 mg/ g for toluene, EA, and MEK, respectively. In addition, the 1/2 solvent vapor adsorption tests using 13 different specimens of activated carbon showed that their capacities were closely related to the iodine adsorption numbers, and this study suggested the adsorption capacity of 300 mg/g as a new quality standard. The novel test method and its standard may help to guarantee the quality of gas-phase activated carbon used for VOCs abatement processes.
        4,000원
        3.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was performed to investigate the effects of water molecules on ozone oxidation of acetaldehyde using a manganese oxide catalyst at room temperature. The catalytic ozone oxidation was conducted at different relative humidity (RH) conditions of 0%, 50%, and 80%. As the RH increased, both ozone and acetaldehyde removal efficiencies dropped due to competitive adsorption on the surface of the catalyst. At the highest RH of 80%, the oxidation reaction was severely retarded, and oxidation by-products such as acetic acid were formed and adsorbed on the surface. After the ozone oxidation of acetaldehyde, the regeneration of the catalyst using ozone alone was tested, and the further oxidation of accumulated organic compounds was investigated under the RH conditions of 0%, 50%, and 80%. When the highest relative humidity was introduced in the regeneration step, the ozonation reaction with the by-products adsorbed on the catalyst surface decreased due to the competitive reaction with water molecules. These findings revealed that, only when relative humidity was low to minimize the formation of by-products, the ozone oxidation of acetaldehyde using the manganese oxide catalyst at room temperature can be feasible as an effective control method.
        4,000원
        4.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a manganese catalyst on the surface of a ceramic support was developed for the removal of odor emitted from barbecuing restaurants. Its ozone oxidation at room temperature was tested using acetaldehyde (CH3CHO), the most dominant compound in the barbecuing odor, and the ozonation efficiency under wet conditions was also studied. The manganese catalyst was made with the honeycomb-type ceramic support, and an acid pretreatment was applied to increase its specific surface area, resulting in an increase of the degree of dispersion of manganese oxide. The acetaldehyde removal efficiency using the manganese catalyst on the acidpretreated support (Mn/APS) increased by 49%, and the ozone decomposition rate and the CO2 conversion rate also increased by 41% and 27%, respectively. The catalyst without surface pretreatment (Mn/S) showed a low efficiency for the acetaldehyde ozonation, and other organic compounds such as acetic acid (CH3COOH) and nonanal (CH3(CH3)7CHO) were found as oxidation by-products. In comparison, CO2 was the most dominant product by the ozonation of acetaldehyde using the Mn/APS. When the relative humidity was increased to 50% in the influent gas stream, the acetaldehyde removal efficiency using the Mn/APS decreased, but only the production rates of CO2 and acetic acid were changed. As a result, the manganese oxide catalyst on the surface of the acid-pretreated honeycomb support manifested high acetaldehyde ozonation even at humid and room temperature conditions.
        4,000원
        5.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study is to identify the emission characteristics of VOCs from small-scale painting facilities, such emissions being pollutants that impact nearby living areas and to devise improvement measures to enhance management plans regarding pollutant emissions from painting facilities. VOCs emissions from painting facilities were estimated according to Clean Air Policy Support System (CAPSS) data based on the National Institute of Environmental Research (NIER)'s emission list in 2017. Three automotive painting facilities in Seoul were chosen for evaluation of the adsorption system. We analyzed the characteristics of VOCs generated by type of different operation and measured the removal efficiency of the adsorption system. Therefore, we analyzed current emissions of VOCs from automotive painting facilities based on field measurements. According to such detailed analysis, a systematic management plan was proposed.
        4,300원
        6.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Indoor air contaminated with various pollutants commonly poses a risk to human health, and the need for installing air purifiers has been increasing. However, in commercial air purifiers pollutants-removal efficiency and durability are generally low. Since silver nano-composites are known to have catalytic oxidation and antibacterial capacities, it was anticipated to be applicable for indoor air purifiers. In this study, silver nano-composites were applied to granular activated carbon and scrubber solutions to treat a mixture of three air pollutants including toluene, formaldehyde, and bioaerosol. In the activated carbon deposited with silver nano-particles, the specific surface area decreased, resulting in a 10% loss of adsorption capacity for toluene. However, the removal efficacy of formaldehyde and bioaerosol increased by 10% due to the catalytic oxidation and antibacterial capacities. In the scrubber operation with silver nano-particles, the removal rates of formaldehyde and bioaerosol improved by 20%, while toluene removal was not observed. When the activated carbon column and the scrubber was connected in series, toluene was mainly removed by the activated carbon, and the removal rates of formaldehyde and bioaerosol increased in the presence of silver nano-particles. Consequently, for the improvement of indoor air quality, it is deemed appropriate to apply silver nano-material to indoor environments contaminated with pollutant mixtures.
        4,000원
        7.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Odor emitted from the degradation process of food waste is a common cause of public complaints, and appropriate odor treatment methods need to be implemented. In this study, a hybrid plasma catalyst system was applied to treat individual odorous compounds including acetaldehyde and hydrogen sulfide, which are known to be major odor compounds produced from food waste. MnOx catalysts were prepared by varying Mn/support loading ratios, and surface analyses showed that the Mn_5% catalyst achieved the highest performance because dominant manganese oxide species on the surface of the catalyst was found to be Mn2O3, Using the catalyst, the removal rate of hydrogen sulfide steadily increased as the space velocity in the MnOx catalyst reactor decreased. Meanwhile, the removal rate of acetaldehyde did not increase significantly when decreasing the space velocity more than 24,000 hr-1. Following the catalyst experiments using the individual odorous compounds, the hybrid system was applied for testing odor treatment of actual food waste. The actual food waste study showed that both hydrogen sulfide and acetaldehyde were steadily removed; hydrogen sulfide was removed almost completely during the initial 30-minute period, while the acetaldehyde removal was started after the decrease of hydrogen sulfide. In addition, it was confirmed that the dilution-to-threshold for odor reduced from 2,080 D/T to 300 D/T during the initial period. In conclusion, the plasma and Mn2O3 catalyst system can be applied in food waste collection containers to effectively control odor problems.
        4,000원
        8.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Odor emitted from food waste is commonly known as a severe problem, and needs to be controlled to minimize public complaints against food waste collection systems. In this study, ozone oxidation with manganese oxide catalyst, which is known to effectively treat odorous substances at room temperature, was applied to remove acetaldehyde and hydrogen sulfide, the model odorous compounds from food waste. In addition, the effect of relative humidity (RH) on the ozone/catalyst oxidation was tested at 40%, 60%, and 80%. When the catalyst was not applied, the removal of acetaldehyde was not observed with the ozone oxidation alone. In addition, hydrogen sulfide was slowly oxidized without a clear relationship under RH conditions. Meanwhile, the ozone oxidation rates for acetaldehyde and hydrogen sulfide substantially increased in the presence of the catalyst, but the removal efficiencies for both compounds decreased with increasing RH. Under the high RH conditions, active oxygen radicals, which were generated by ozone decomposition on the surface of the catalyst, were presumably absorbed and reacted with moisture, and the decomposition rate of the odorous compounds might be limited. Consequently, when the ozone oxidation device with a catalyst was applied to control odor from food waste, RH must be taken into account to determine the removal rates of target compounds. Moreover, its effect on the system performance must be carefully evaluated.
        4,000원
        9.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, volatile organic compounds (VOCs) emitted from printing industries were analyzed, and an inorganic adsorbent, γ-alumina, was selected for the effective control of the VOC emissions. Printing processes commonly require inks, thinners, and cleaners, and they were mixed organic solvents containing aromatic compounds, ketones, and alcohols. Therefore, toluene, methyl ethyl ketone (MEK), and isopropyl alcohol (IPA) were selected as model compounds for this study. The adsorptive properties using γ-alumina were determined for the model compounds. Both batch isotherm and continuous flow column tests demonstrated that the adsorption capacity of MEK and IPA was 3~4 times higher than that of toluene. The column test performed at an inlet toluene concentration of 100 ppm showed that an 80% breakthrough for toluene was observed after 3 hours, but both MEK and IPA were continuously adsorbed during the same time period. A numerical model simulated that the γ-alumina could remove toluene at a loading rate of 0.4 mg/min only for a 4-hour period, which might be too short of a duration for real applications. Consequently, lifetime enhancement for γ-alumina must be implemented, and ozone oxidation and regeneration would be feasible options.
        4,000원
        10.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To abate the problem of odor from restaurants, a hybrid adsorbent consisting of organic and inorganic materials was developed and evaluated using acetaldehyde as a model compound was deveioped and evaluated. Powders of activated carbon, bentonite, and calcium hydroxide were mixed and calcinated to form adsorbent structure. The surface area of the hybrid adsorbent was smaller than that of high-quality activated carbon, but its microscopic image showed that contours and pores were developed on its surface. To determine its adsorption capacity, both batch isotherm and continuous flow column experiments were performed, and these results were compared with those using commercially available activated carbon. The isotherm tests showed that the hybrid adsorbent had a capacity 40 times higher than that of the activated carbon. In addition, the column experiments revealed that breakthrough time of the hybrid adsorbent was 2.5 times longer than that of the activated carbon. These experimental results were fitted to numerical simulations by using a homogeneous surface diffusion model (HSDM); the model estimated that the hybrid adsorbent might be able to remove acetaldehyde at a concentration of 40 ppm for a 5-month period. Since various odor compounds are commonly emitted as a mixture when meat is barbecued, it is necessary to conduct a series of experiments and HSDM simulations under various conditions to obtain design parameters for a full-scale device using the hybrid adsorbent.
        4,000원
        11.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        어린이 중국어는 의식적으로 언어규칙이나 문법 등 언어학적 지식을 학습하는 것보다 놀이를 통해서 무의적으로 자연스럽게 습득하는 것이 더욱 효과적이다. 무의적인 언어 습득을 위해서는 음악과 놀이를 활용할 수 있다. 음악과 놀이는 인간의 가장 창의적인 활동 중의 하나인 동시에 어린이들이 성장하고 언어를 배우고 사용하는데 없어서는 안 될 아주 중요한 역할을 한다. 어린이들은 놀이와 동요를 통해서 모국어를 습득하고, 서로 소통하며 사회를 배우며 성장해 나간다. 동요와 놀이는 단순히 유희가 아닌 통합적 언어 능력을 키우는 교육적 가치를 가지고 있다.
        6,100원
        13.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Acidic and basic mixtures of odorous compounds are commonly emitted from various sources, and, in an absorption process, pH conditions in the liquid phase significantly affect the performance. In this study, the effect of pH on mass transfer in a bubble column reactor was evaluated using hydrogen sulfide and ammonia as a model mixture. Their mass transfer coefficients were then calculated. Furthermore, the total mass transfer coefficients as a function of pH were evaluated, and the experimental data were fitted into an empirical equation using dimensionless numbers. The mass transfer rates of hydrogen sulfide, the non-ionic form, increased dramatically with increasing pHs, while those of ammonia were almost unchanged because of its high solubility. As a result, a favorable pH condition for less soluble compounds must be selected to achieve high absorption capacity. The total mass transfer rates, which took into account pH effects as well as all the non-ionic and ionic constituents together, were found to be from 2.2 to 2.4 × 10−3 min−1 for hydrogen sulfide and ammonia, respectively, and they were almost constant at different pHs. The empirical equations, which were derived to obtain the best fit for the total mass transfer rates, implied that a method to increase diffusivity of each compound should be applied to improve overall mass transfer. In addition, when using the empirical equation, a mass transfer coefficient at a given set of pH and operating conditions can be calculated and used to design a water scrubbing process.
        4,000원
        14.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Odor emission factors (OEFs) are important parameters in characterizing odor sources, understanding emission patterns, designing abatement facilities, and providing appropriate control methods. In this study, OEFs for complex odor from grit removal chambers in publicly-owned wastewater treatment plants were determined, and the major operating conditions affecting the emission factors were investigated. In the main study site of “S” wastewater treatment plant, the averaged OEFs from the grit chamber were found to be 466.2, 162.6, and 54.7 OU/m2/min in summer, spring, and winter, respectively. OEFs from two other grit chambers in different wastewater plants were independently measured for comparison, and the values were in the same range as the OEF from S-site at a 95% confidence level. Nevertheless, the OEFs could differ depending on the types of wastewater and the sizes of wastewater treatment plants. Using the multi-variable linear regression method, correlations between OEFs and operating conditions, i.e. activities, from grit chambers were statistically analyzed. The analyses showed that operating conditions, including total suspended solids, water temperature, and temperature difference between water and air, were the most significant parameters affecting the OEF. A linear equation using these three parameters was proposed to estimate the OEF, and can be used to predict an OEF for another grit chamber, without odor measurement.
        4,000원
        15.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        During the decay process of food waste, odor and leachate are generally produced because food is easily decomposed due to its high organic and moisture contents. In this study, various food waste samples, including samples artificially prepared and collected from actual waste containers, were tested to determine odor and leachate production as the samples were decomposed at a constant temperature of 35°C. In the air phase, total volatile organic compounds (TVOCs), acetaldehyde (AA), methyl mercaptan (MM), hydrogen sulfide (H2S), and dimethyl sulfide (DMS) were measured as a function of the decay period for four days. The results of the experiment showed that TVOC and AA were produced at higher concentrations in the actual food waste than in all artificial wastes. The AA concentration accounted for about 90% of the TVOC in all of the waste samples except for the food waste containing meat and fish only. The concentrations of volatile sulfur compounds (VSCs) were generally lower than 100 μg/kg, and the concentration of DMS was the highest among the VSCs. In the waste sample containing meat and fish only; however, the concentration of VSCs increased up to 1,700 μg/kg, and mostly consisted of MM and DMS. Complex odor concentrations were found to be the highest after a decay period of 12-48 hours. In addition, the complex odor was mostly related to VSCs with low odor thresholds rather than the TVOC. The pH values mostly decreased from 5 to 3.5 as the waste samples were in the decomposition periods, while the pH value increased to 6 in the food waste containing meat and fish only. Consequently, odor intensity and leachate production were the highest in the 12-48 hour range as the decomposition started, and thus an appropriate control strategy needs to be implemented based on the waste composition and the decay period.
        4,300원
        16.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        문화소통능력 (intercultural communicative competence : ICC)은 서로 다른 문화 배경을 가진 언어 사용자들이 문화의 다양성을 인정하고, 서로의 문화에 대한 이해를 통해 갈등을 해소하고 원활한 의사소통을 할 수 있는 능력을 말한다. 본고는 중국어의 호칭과 인사법을 예로 들어 중국인의 언어습관과 소통방법에 대해 설명하면서, 우리나라 중국어 교육현장에서 간과되어 왔던 문화소통능력의 중요성을 강조하고자 한다.
        5,100원
        17.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydrogen sulfide (H2S) emitted from various sources is a major odorous compound, and non-thermal plasma (NP) has emerged as a promising technique to eliminate H2S. This study was conducted to investigate lab-scale and pilot-scale NP reactors using corona discharge for the removal of H2S, and the effects of relative humidity, applied electrical power on reactor performance and ozone generation were determined. A gas stream containing H2S was injected to the lab-scale NP reactor, and the changes in H2S and ozone concentration were monitored. In the pilotscale NP experiment, the inlet concentration and flow rate were modified to determine the effect of relative humidity and applied power on the NP performance. In the lab-scale NP experiments, H2S removal was found to be the 1st-order reaction in the presence of ozone. On the other hand, when plasma reaction and ozone generation were initiated after H2S was introduced, the H2S oxidation followed the 0th-order kinetics. The ratio of indirect oxidation by ozone to the overall H2S removal was evaluated using two different experimental findings, indicating that approximately 70% of the overall H2S elimination was accounted for by the indirect oxidation. The pilotscale NP experiments showed that H2S introduced to the reactor was completely removed at low flow rates, and approximately 90% of H2S was eliminated at the gas flow rate of 15 m3/min. Furthermore, the elimination capacity of the pilot-scale NP was 3.4 g/m3·min for the removal of H2S at various inlet concentrations. Finally, the experimental results obtained from both the lab-scale and the pilot-scale reactor operations indicated that the H2S mass removal was proportional to the applied electrical power, and average H2S masses removed per unit electrical power were calculated to be 358 and 348 mg-H2S/kW in the lab-scale and the pilot-scale reactors, respectively. To optimize energy efficiency and prevent the generation of excessive ozone, an appropriate operating time of the NP reactor must be determined.
        4,000원
        18.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The metal plating industry produces a large amount of wastewater generally containing heavy metals with various chemical compounds; as such, treating the wastewater is both an environmental and an economic challenge. A vacuum evaporation system has been developed to effectively reduce the volume of plating wastewater. However, the gas stream discharged from the distillation unit of the evaporator is often contaminated with high concentrations of odorous compounds such as ammonia and dimethyl disulfide (DMDS). In this study, a non-thermal plasma process operated in wet conditions was applied to remove the odorous compounds, and it showed high removal efficiencies of greater than 99% for ammonia and 95% for DMDS. However, the gas flowrate more substantially affected the efficiency of ammonia removal than the efficiency of DMDS removal, because the higher the gas flowrate, the shorter the contact time between the odorous compound and the mist particles in the wet plasma reactor. The analyses of the maximum removal capacity indicated that the wet non-thermal plasma system was effective for treating the odorous compounds at a loading rate of less than 20 mg/m3/min even though the lowest amount of electrical power was applied. Therefore, the wet-type non-thermal plasma system is expected alleviate to effectively abate the odor problem of the vacuum evaporator used in the treatment of plating wastewater.
        4,000원
        19.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study investigates the mechanical performance of carbon-capturing concrete that mainly contains blast furnace slag. METHODS: The mixture variables were considered; these included Portland cement content, which was varied from 10% to 40% of the blast furnace slag by weight. The specimens were exposed to different conditions such as high N2 and O2 concentrations, laboratory conditions and high CO2 conditions. Mechanical performances, including compressive and flexural strengths and carbon-capturing depth, were evaluated. RESULTS : The slump, air content and unit weight were not affected significantly by the variation in cement content. The strength development when the specimens were exposed to high purity air was slightly greater than that when exposed to high CO2. As the cement content increased the compressive and flexural strength increased but not considerably. The carbon-capturing capacity decreased as the cement content increased. The specimens exposed in the field for 70 days had flexural strength greater than 3 MPa. CONCLUSIONS : The results indicate that cement content is not an important parameter in the development of compressive and flexural strengths. However, the carbon-capturing depth was higher for less cement content. Even after field exposure for 70 days, neither any significant damage on the surface nor any decrease in strength was observed.
        4,200원
        20.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: In this study, alkali-activated blast-furnace slag (AABFS) was investigated to determine its capacity to absorb carbon dioxide and to demonstrate the feasibility of its use as an alternative to ordinary Portland cement (OPC). In addition, this study was performed to evaluate the influence of the alkali-activator concentration on the absorption capacity and physicochemical characteristics. METHODS: To determine the characteristics of the AABFS as a function of the activator concentration, blast-furnace slag was activated by using calcium hydroxide at mass ratios ranging from 6 to 24%. The AABFS pastes were used to evaluate the carbon dioxide absorption capacity and rate, while the OPC paste was tested under the same conditions for comparison. The changes in the surface morphology and chemical composition before and after the carbon dioxide absorption were analyzed by using SEM and XRF. RESULTS: At an activator concentration of 24%, the AABFS absorbed approximately 42g of carbon dioxide per mass of paste. Meanwhile, the amount of carbon dioxide absorbed onto the OPC was minimal at the same activator concentration, indicating that the AABFS actively absorbed carbon dioxide as a result of the carbonation reaction on its surface. However, the carbon dioxide absorption capacity and rate decreased as the activator concentration increased, because a high concentration of the activator promoted a hydration reaction and formed a dense internal structure, which was confirmed by SEM analysis. The results of the XRF analyses showed that the CaO ratio increased after the carbon dioxide absorption. CONCLUSIONS : The experimental results confirmed that the AABFS was capable of absorbing large amounts of carbon dioxide, suggesting that it can be used as a dry absorbent for carbon capture and sequestration and as a feasible alternative to OPC. In the formation of AABFS, the activator concentration affected the hydration reaction and changed the surface and internal structure, resulting in changes to the carbon dioxide absorption capacity and rate. Accordingly, the activator ratio should be carefully selected to enhance not only the carbon capture capacity but also the physicochemical characteristics of the geopolymer.
        4,000원
        1 2 3