As indoor activities continue to increase, the importance of indoor air is emphasized. Moreover, children's activities are emphasized as being vulnerable. In this study, vocal organic compounds (VOCs) and CO2 in the indoor air were analyzed among children aged 4 to 7 years attending day care centers in Seoul. In the case of VOCs, the average concentration measured during a period of 24 hours in an asthmatic home was 143.9 (μg/m3). The average concentration measured during a period of 24 hours in the asthma and rhinitis home was 146.7 (μg/m3). In CO2, the average concentration measured during a period of 24 hours in the asthmatic home was 665.9 (ppm). The average concentration measured during a period of 24 hours in the asthma and rhinitis home was 695.9 (ppm). In this study, asthma symptoms increased as the concentration of indoor pollutants increased. Exposure of VOCs (μg/ m3) and CO2 (ppm) among environmental factors shows that respiratory symptoms such as asthma can be induced.
The purpose of this study is to investigate the ELF-MF emissions from UCLs and to compare the ELF-MF emission levels of HVTLs and UCLs. In addition, this study proposes a method and management plan to investigate the effects of exposure to ELF-MF emissions from UCLs. The ELF-MF emissions from the 154 kV UCL were 15.4±24.4 (GM: 7.8)mG, while from the 345 kV line they were 6.0±2.4 (GM: 5.7)mG. Through the comparison between ELF-MF emissions of 154 kV UCL and HVTL, at about 20 m distance from an overhead line the emissions level is 4 mG, while from an underground line at about 10 m distance the emission level was recorded as less than 4 mG. Through comparing the ELF-MF emission amount of the UCL according to the burial method, it was found that the direct ELF-MF emission levels are 15.3±7.4 (GM: 13.9)mG at the direct point, in the conduit type 21.0±30.4 (GM: 10.8)mG, and in the buried form 8.5±12.3 (GM:5.1)mG. In this study, ELF-MF emissions were about 37.0% and 47.5% lower, respectively, compared with the direct power and conduit type. The correlation between ELF-MF emission (mG) and power load (A) was analyzed. The higher the power load, the higher the ELF-MF emission. The correlation between ELF-MF emission at the direct point and depth of the UCL was also analyzed, and it was found that as the depth of line burial increased, ELF-MF emissions decreased.
We analyzed volatile organic compounds (VOCs) of petroleum-based laundry solvents in closed systems by static headspace analysis and investigated the emission characteristics of odorous compounds emitted from organic solvents in the small-scale dry cleaning process. The compounds containing eight to eleven carbon atoms were analyzed to account for 96.92% of the total peak area in a GC-MS chromatogram. It was found that the compounds with ten carbon atoms showed the largest proportion. In the small-scale dry cleaning process (3 kg of laundry and 40 min of drying time), a total of 36 VOCs was quantified, and the odor contribution of these compounds was evaluated. The sum of the odor quotient (SOQ) was analyzed up to 151±163 in the first 12 min of operation. The main odor-causing compounds were acrolein, ethylbenzene, hexane, acetone, and decane, and their odor contributions were 32.28%, 13.47%, 10.52%, 10.20%, and 8.08%, respectively.
The objective of this study was to investigate the effect of shoe dust on the indoor environment, and the effectiveness of shoe dust control on indoor air quality. Test dust was resuspended to reach a mass concentration of particles (2.5-10 μm size) more than 3 times compared to background level, and 1.5 times for particles less than 1 μm in size. The shoes, which were used for actual walking purposes in the outdoor environment, increased indoor PM10 concentration by 118±9%. The removal of shoe dust by water washing and mechanical suction brought about an improvement of indoor air quality. In particular, in circumstances where 27 people walked for one hour into the indoor environment, the mechanical suction of shoe dust decreased PM10 concentration by about 17% (based on the mass balance analysis).
This study investigated the indoor air quality conditions of public transportation according to the changing of seasons and different times of the day. We measured the concentration of PM10 and CO2, which are substances subject to control measures and limits established by Ministry of Environment for public transportation, and compared actual levels whit the legal standard. Public transportation was classified as subway lines (form 1 to 4), trains (KTX, ITX) and buses. The PM10 concentration was measured as being high during peak hours in winter compared to that in summer. On the other hand, the PM10 concentration in trains and buses was shown to be low. The CO2 concentration in public transportation was recorded as being higher than the legal standard. PM10 concentration was affected by the inflow of outdoor air, and CO2 concentration was influenced by the number of people in a particular space or environment. This survey focused on the indoor air quality of public transportation. The basic data could prove useful in formulating policies to promote and maintain good indoor air quality with regard to public transportation.
This study aims to evaluate the concentration of biomarkers for heavy metals and volatile organic compounds (VOCs) for the residents living in the Gwangyang industrial complex to compare with residents in the residential area as a control. A total of 810 healthy adults participated in this study, and their urinary and blood samples were analyzed for metals, including As, Pb, Cd, or Hg, and VOC compounds. All study participants also completed questionnaire surveys to collect more detailed information on personal lifestyles, dietary and drinking habits, residential housings types, and their health conditions. The geometric means of urinary levels of Cd were 1.06 g/g creatinine for those living in the vicinity of Gwangyang industrial complex and 1.41 g/g creatinine for those in residential areas (p<0.05). Furthermore, urinary mean levels of Hg were 1.39 μg/g creatinine in the industrial area and 1.23 μg/g creatinine in the control area, respectively. The concentrations of individual VOCs in blood were significantly different between the two population groups. Therefore, urinary levels of Cd and Hg were significantly higher in the local residents compared to the Gwangyang industrial areas. A further study is needed to identify adverse health effects due to environmental exposures to heavy metals, VOCs, and other pollutants in the Gwangyang industrial complex areas in the future.
The use of air cleaners has become popular to quickly remove contaminants present in indoor air such as fine dust and fungi. However, fungal information is rarely available in the filters equipped in the air cleaners. This study was conducted in winter to examine fungal concentration and species in the air cleaner filters of ten residential houses located in Incheon, Seoul, Hwaseong, and Gimpo cities. Fungi were detected in nine out of eleven filters from the ten houses. The level of fungi in the filters ranged from 0 CFU/cm2 to 2,370 CFU/cm2. There were differences in the fungal concentration among the eleven filters. Filters from three houses revealed levels over 1,000 CFU/cm2. The operation time of air cleaners did not seem directly related to the level of fungal concentration. A total of 326 isolates were obtained and classified as six genera belonging to Alternaria, Aspergillus, Cladosporium, Fusarium, Penicillium, and Trichoderma. Among these six genera, 20 species including one Alternaria, one Aspergillus, three Cladosporium spp., two Fusarium spp., eleven Penicillium spp., and two Trichoderma were identified. There were species that cause allergic reaction, pneumoniae, mycosis, and plant disease. Three species were known species of mycotoxin producers. Aspergillus niger, Cladosporium cladosporioides, and Penicillium brevicompactum were the most frequently detected fungi both in the air and in the air cleaner filters. This is the first report of fungal communities present in the air cleaner filters of residential houses in Korea.
Since the implementation of the Odor Prevention Act in 2005, the number of odor complaints has continuously increased due to the increased interest in the living environment. The current odor control means is a concentrationbased method for the source of odor. That is why there is a difference between the odor sensitivity and the result of the odor measurement in the odor damage area. The government is considering the introduction of the grid method, which is the odor management method of Germany, as the method of odor investigation in the odor damage area in the second comprehensive Odor Prevention Policy (2019-2028). The grid method is receptor-based odor measurement method that investigators use to judge odors in the field, task that expensive and requires substantial manpower and time. To study an odor measurement method that is suitable for domestic conditions, this study compared the correlation between results based on the odor frequency concept grid method around the livestock facilities and the result of ammonia concentration measured by passive air sampler. The correlation coefficient (R) that is between the frequency of odor per spot for the entire odor and the ammonia concentration that was measured by passive air sampler was 0.65 which is relatively good. Among the entire odor detected by the grid method, the correlation coefficient (R) between the odor frequency selected only for livestock odor and the ammonia concentration was significantly increased to 0.80. In addition, the correlation between odor exposure (ECPexist) and the ammonia concentration for the overall odor was 0.81 (linear) and 0.86 (index). If only the livestock odors were selected, the correlation between odor exposure and the ammonia concentration was very high at 0.96 (linear) and 0.95 (index).
Odor emitted from food waste is commonly known as a severe problem, and needs to be controlled to minimize public complaints against food waste collection systems. In this study, ozone oxidation with manganese oxide catalyst, which is known to effectively treat odorous substances at room temperature, was applied to remove acetaldehyde and hydrogen sulfide, the model odorous compounds from food waste. In addition, the effect of relative humidity (RH) on the ozone/catalyst oxidation was tested at 40%, 60%, and 80%. When the catalyst was not applied, the removal of acetaldehyde was not observed with the ozone oxidation alone. In addition, hydrogen sulfide was slowly oxidized without a clear relationship under RH conditions. Meanwhile, the ozone oxidation rates for acetaldehyde and hydrogen sulfide substantially increased in the presence of the catalyst, but the removal efficiencies for both compounds decreased with increasing RH. Under the high RH conditions, active oxygen radicals, which were generated by ozone decomposition on the surface of the catalyst, were presumably absorbed and reacted with moisture, and the decomposition rate of the odorous compounds might be limited. Consequently, when the ozone oxidation device with a catalyst was applied to control odor from food waste, RH must be taken into account to determine the removal rates of target compounds. Moreover, its effect on the system performance must be carefully evaluated.
We used three gas sensors to monitor hydrogen sulfide, ammonia, and volatile organic compounds (VOCs), which were frequently emitted from environmental facilities, such as municipal wastewater treatment, livestock manure treatment, and food waste composting facilities. Two electrochemical (EC) sensors for detecting hydrogen sulfide and ammonia, and a photoionization detector (PID) sensor for detecting VOCs were characterized in this study. The performance of their linearity by concentration levels, lower detection limit (LDL), repeatability, reproducibility, precision, and response time were tested under the laboratory condition. The linearity according to concentration levels were favorable for all three sensors with high correlation coefficients (R2 > 0.98). The ammonia sensor showed the highest LDL (18.6 ppb) and the hydrogen sulfide and VOC sensors showed 22.3 ppb and 26.7 ppb of LDL, respectively. The reproducibility and precision were favorable for all three sensors, indicating a lower relative standard deviation (RSD) than 0.9% in the reproducibility test and 7.2% in the precision test. The response times to reach target concentration were varied from 1 to 12 minutes. The ammonia sensor needed 12 minutes of response time at 1 ppm target the NH3 concentration and the hydrogen sulfide and VOC sensors needed less than 2 minutes of response time.
This study was performed to determine the effects of soil and building materials on indoor radon concentration. Short-term measurements were made in the underground soil of a building along with the radon emanation rates from the phosphogypsum board used as the interior wall. The radon measurements in the soil were 9,213 Bq/m3 in the B3 level, and 3,765 Bq/m3 in the B4 level. Soil radon concentration in the B4 level was 2.4 times higher than in the B3 level. Indoor radon measurements in 50 different locations in the underground of the building, averaged from 144.3 Bq/m3 (B1), 177.0 Bq/m3 (B2), and 189.2 Bq/m3 (B3) to a high of 210.1 Bq/m3 (B4). Indoor radon concentration was increased from the lower level to the upper level. The radon emanation rates from phosphogypsum were 4,234.1 mBq/m2/h and, 450.4 mBq/kg/h. The measurement results indicated that the phosphogypsum board used as building materials as well as the soil could affect the indoor radon concentration.