This study was carried out to develop a system to reduce ultrafine dust using hygroscopic materials such as glycerin and propylene glycol. Prior to the development of an ultrafine dust reduction system, the moisture condensation efficiency of glycerin and propylene glycol was investigated based on relative humidity (RH). The results showed that when no substances (glycerin and propylene glycol) were added to a tedlar bag, the relative humidity and temperature remained constant. The moisture condensation efficiency of glycerin was 60%, and the time it took to reach 50% of the initial relative humidity was about 40minutes. In the case of propylene glycol, the moisture condensation efficiency was 75%, and the time it took to reach 50% of the initial relative humidity was about 10 minutes. When glycerin and propylene glycol mixture was added, the moisture condensation efficiency was 68% and it took 20 minutes to reach 50% of the initial relative humidity. These results suggest that hygroscopic materials such as glycerin and propylene glycol can actually condense moisture in the atmosphere. In addition, considering actual atmospheric conditions, the relative humidity was set to 60% and 40% or less, and the moisture condensation efficiency was measured. The results showed that the mixture of glycerin and propylene glycol yielded the highest condensation efficiencies, at 69% and 62%, respectively. Therefore, it is preferable to use a mixture of glycerin and propylene glycol to condense moisture in the range of relative humidity in the actual atmosphere.
The purpose of this study was to determine the conditions necessary for the total eradication of mite pests in indoor environments. The study involved the construction of a sterilization experimental setup. For this setup, various sterilization techniques, such as UV-C, ozone, ultrasound, and heat were applied, based on previous research. The experimental procedure consisted of placing mite pests in a chamber and subjecting them to different sterilization techniques. Observations were conducted immediately after the experiment and repeated five days later to assess the extent of eradication. The results showed that UVC, ozone, and ultrasound methods were not successful in completely eradicating the mite pests. In contrast, heat sterilization demonstrated effectiveness depending on the specific temperature and exposure time. To achieve the eradication of mite pests in indoor environments, it is necessary to maintain conditions of short-term high-temperature sterilization above 65°C or sustain temperatures above 50°C for a minimum duration of 90 minutes.
In this study, we analyzed the changes in concentrations of volatile fatty acids (VFA), phenols, and indoles, as well as odor contribution in pig slurry. The pig slurry was stored for approximately two months after the manure excretion of pigs which had been fed 3% level of peat moss additive. The investigation was carried out through lab-scale experiments simulating slurry pit conditions within pig house. Throughout the storage period, the concentration of VFA exhibited a tendency to be 11%-32% higher in the pig manure treated with peat moss as compared to the control group. From a concentration perspective, phenol and acetic acid accounted for the majority of the total odor compounds produced during the pig slurry storage period. However, their significance diminished when the concentration of odoros compounds are converted into odor activity value and odor contribution. Despite the odor reduction effect of the ammonia (NH3) adsorption by peat moss, if it cannot effectively reduce the high odor-contributing compounds such as indoles and p-cresol, the sole use of peat moss may not be considered an effective means of mitigating odors produced by pig slurry. According to this study, indoles, p-cresol, skatole, and valeric acid were consistently revealed as major odor-contributing substances during the two-month storage of pig slurry. Therefore, a comprehensive odor mitigation methodology should be proposed, taking into consideration the odor generation characteristics (including temporal concentration and odor contribution) of pig slurry-derived odors during storage.
The air dilution olfactory method to measure complex odors needs to store and carry odor samples from the field sampling until the analysis in laboratories. Until the analysis of sample in the laboratory, odor dilution factor (odor sensitivity) in the sample bag may decrease over time depending on the characteristics of each odor substances. This is one of the limitation for the air dilution olfactory method. Thus, the air dilution device enable to measure without loss in complex odors of samples. Recently, many studies on the performance test of on-site air dilution devices, i.e., field olfactometer, has been conducted to figure out the feasibility of the field olfactometers. In this study, seven odor samples were collected from five odor emission source sites. And comparative analysis with the air dilution olfactory method was carried out to assess the field applicability of the olfactometer. As results, the performance of the field olfactometer used in this study is regared as the affordable method. The dilution factors from between two methods showed the similar values, indicating low values of standard deviations. In order to ensure the accuracy and precision of measurement data using the field olfactometer, methodology minimized variables (that may affect measurement) needs to establish.
ATP luminescence measurements (using Relative Light Units, RLU) has been used to assess the levels of bacterial contamination on the surfaces of various materials. However, not much is known about their suitability in assessing bacterial contamination on paper surfaces. This study was conducted to evaluate the feasibility of using ATP luminometers in measuring levels of bacteria contamination on paper surfaces. The three ATP luminometers studied were Clean-Q, smart PD-30, and 3M™ Clean-Trace™ LM1 manufactured by different companies. There were some differences in RLU results among the three ATP luminometers when they were tested with different concentrations of Micrococcus luteus cell suspension. 106 - 107 cells were required in order to effectively detect Bacillus subtilis, Escherichia coli, and Micrococcus luteus on the surfaces of A4 printing sheets (100 cm2) when using the three ATP luminometers. The sizes and physical properties of surface areas varied slightly among the swabs used for the three ATP luminometers. Concentration-specific measurements (RLU) of M. luteus taken from the surfaces of six kinds of paper (fine print paper, medium print paper, ground paper, newsprint paper, practice paper, tracing paper) were possible using the smart PD-30 and LM1 ATP luminometers. ATP detection values of M. luteus varied among the six types of paper. The highest ATP detection values were found on the surfaces of tracing paper. If the RLU value is recorded at the level of 1000, this could indicate a very high bacterial contamination level of 105 to 106 CFU/4 cm2.
This study examines the correlation between livestock odor civil petitions and the establishment of malodor control areas in Jeju Special Self-Governing Province, focusing on swine farms where numerous civil petitions regarding malodors have been received. After the designation of the malodor control areas, high odor concentrations occurred in Aewoleup and Jocheon-eup, and the odor concentration decreased in other areas. The number of civil petitions shows a consistent annual trend, with increased petitions from March, peaking during summer (July and August), and decreasing from September into winter. In Jeju-si, there were many civil petitions in Hallim-eup and Aewol-eup where there were many malodor control areas. However, in Seogwipo-si, there were also many civil petitions in Pyoseonmyeon, where there is no malodor control area. Additionally, we compared the average multiple of compound malodors and the rate of exceeding the maximum allowable emission level for compound malodors with the number of livestock malodor civil petitions to assess the actual state of malodors. The results reveal a stronger correlation between the number of civil petitions and the rate of exceeding the compound malodors allowable emission level than the average multiple for compound malodors. These findings provide valuable insights into addressing livestock odor concerns and enhancing malodor control measures in Jeju Island.