Since 1974, the urban subway has been used as a major form of public transportation in Seoul, Korea. The air quality in the subway environment depends on the introduction of air pollutants from roadway air and its generation is caused by subway operation in the tunnel. In the subway tunnel, PM10 concentration was monitored from March 8 to 15, 2018 and from March 26 to 28, 2018, and compared with concentrations that are routinely monitored at the subway concourse and the nearest roadside air quality monitoring station (RAQMS). Overall PM10 concentration at the concourse was similar to that of the RAQMS. However, PM10 concentration in the tunnel was significantly higher than those of the subway concourse and RAQMS, and showed distinct diurnal variation caused by train operation. The dominant peak concentrations were highly correlated with the number of train operations per hour. The minimum PM10 concentration was observed between 2 am to 5 am when the train was not operated. This was similar to that of the RAQMS. Although the diurnal variation of the PM10 concentration at the concourse is not significant, the overall trend is similar to that in the tunnel.
Radon is known to be one of the representative carcinogen materials, and may cause severe health damage to the human body with long-term exposure. Without proper treatment such as natural and mechanical ventilation, indoor radon concentration tends to increase as time passes. In this aspect, it is necessary to maintain indoor radon concentration below the domestic indoor air quality (IAQ) management standard by continuous monitoring. However, the number of practical devices which can detect radon concentration is scarce and most of the existing devices are very costly. Among such devices, the RS9A, a prototype of a radon detector, detects indoor radon concentration and is priced significantly lower compared to other existing radon detectors. In this paper, we investigated the RS9A for the continuous detection of indoor radon gas and compared its performance to a commercially available radon detector (RadonEye). We measured indoor radon concentrations at two separate sites by using both detectors simultaneously. The indoor radon concentrations measured by the aforementioned detectors revealed a high correlation. Therefore, the RS9A can be considered as an appropriate candidate for use as a continuous indoor radon monitoring system.
n-Nonane, 1¸2¸4-trimethylbenzene (124-TMB), toluene, total xylene (TXYL), isopropyl alcohol (IPA), and methyl ethyl alcohol (MEK) are major volatile organic compounds (VOCs) emitted from printing industries. The absorption amount of a single VOC per unit weight of silicone oil was as follows in the order of 189.5 g/kg-silicone oil for n-nonane, 91.7 g/kg-silicone oil for 124-TMB, and 60.1 g/kg-silicone oil for TXYL. Although hydrophobic VOCs were more absorbed in silicone oil than hydrophilic VOCs such as IPA and MEK, IPA and MEK, which had log Kow values of 1 or less, also were absorbed more than 26.0 g/kg-silicone oil. In two and three mixed VOCs of n-nonane, 124-TMB, and toluene, the absorption amount of each in silicon oil was less than that of single a VOC. The total absorption amount of two mixed VOCs ranged from 47.9 g to 138.7 g/kg-silicone oil, and the total absorption amount of three mixed VOCs was 65.8 g/kg-silicone oil. These results suggest that silicone oil is a promising pretreatment solution capable of absorbing high concentrations of VOCs that are intermittently emitted from printing industries. The absorption information of VOCs obtained in this study can be used as the design parameters of a damping device for the pretreatment of VOCs.
High concentrations of PM2.5 were generated in new apartments before moving in, and PM2.5 reduction efficiencies using air cleaners and ventilation systems were evaluated. The experimental results for different air cleaner capacities showed that the PM2.5 reduction efficiencies for 46.2 m2, 66 m2, and 105.6 m2 areas were 81.7%, 92.9%, and 92.5%, respectively. Thus, the larger the air cleaning application area, the higher the PM2.5 reduction efficiency. However, there was no difference in the efficiency of overcapacity air cleaners above a certain capacity. The efficiencies of air cleaners located at the living room center, interior wall, and edge were 81.7%, 79.2%, and 75.8%, respectively. There was, therefore, no significant difference in the PM2.5 reduction efficiencies of air cleaners in different locations. Furthermore, the PM2.5 reduction efficiencies at distances of 1 m, 2 m, and 3 m were 81.7%, 81.3%, and 81.7%, respectively. Therefore, there was also no significant difference in efficiency with distance. The PM2.5 concentration decreases rapidly during natural ventilation. Therefore, when the indoor PM2.5 is higher than the outdoor PM2.5, the air cleaner should be used after natural ventilation. The efficiency of PM2.5 reduction using an air supply-type ventilation system in apartments was 35%, which is not high. The simultaneous operation of the ventilation system and kitchen range hood was effective, showing a PM2.5 reduction efficiency of 69.1%. However, a water sprayer was not effective, showing a PM2.5 reduction efficiency of 24.3%. The results of this study suggest that PM2.5 reduction performance should be standardized by evaluating the efficiency of different ventilation systems. Effective usage and maintenance standards for ventilation systems need to be disseminated, and ventilation systems and air cleaners should be used effectively.
This study examined the relevance of impact factors using survey data, standardized mortality rates, and medical utilization rates of study subjects in the Namhae and Hadong regions. The study subjects were found to have lived in the area for more than 20 years, and in terms of lifestyle, they did not smoke, but the rate of drinking was high and showed little exercise. As a result of analysis through logistic regression analysis, it was found that angina pectoris, myocardial infarction and anemia were affected by exercise status, and allergic rhinitis disease showed significant results depending on the presence of smoking. The standardized mortality rate of men in chronic lower respiratory tract diseases in the Namhae and Hadong regions was higher than in the nation. In the case of allergic rhinitis, both men and women in Namhae were slightly lower than those in Nation, and in Hadong, both men and women were higher than in Nation.
This study was performed to investigate the characteristics of VOCs and carbonyl compounds emitted by smallscale master, offset, and screen printing facilities. During the printing process, concentration measurements of indoor samples were made at each on the printer equipment and the indoor center of the facility. In each case, the window or door served as natural ventilation, and concentration measurements of outdoor samples were made at each air exit point. The results showed that in all printing facilities, the levels of VOCs and carbonyl compounds were much higher in printer equipment compared to indoor levels. Comparative examination of VOCs between printer equipment and the indoors of the facility, the main species of master and offset printer equipment were Methyl isocyanide, 2,2,6-Trimethyloctane, 2,2-Dimethyldecane, 3,7-Dimethyldecane, Toluene, Acetonitrile, and 3- Methoxy-3-methylbutanol. The main species of the indoors of master and offset facilities were Toluene, 2,2,6- Trimethyl-octane, Isopropyl alcohol, 3-Methoxy–3- methylbutanol, Nonane, and Acetone. However, in the screen printing facility, the printer and indoor emission compounds were the same such as 2-Methyl-cyclopentanone, Cyclohexanone, Ethylbenzene, and p-Xylene. Among the compounds released to the outside, Toluene and Acetone were the most abundant species of VOCs and carbonyl compounds, respectively.
In Korea, odor emission control is carried out at the boundary between the discharge port and the site based on the height of the discharge port, but in Japan and the U.K. a range of characteristics are considered in odor management, including the height, size, and amount of exhaust gas, when managing the acceptance criteria of the discharge port that conforms to the odor concentration standards based on the site boundary. In this study, the permitted concentration of odor in the outlet was studied considering the design conditions of the outlet, in order to manage it based on the distance between the outlet and the residential area. To improve the effectiveness of odor management, Korean odor management measures were reviewed by applying the methods used to calculate odor concentration in Japan and the U.K. Guidelines on effective odor reduction were provided by calculating the permissible odor concentration for each condition based on the flow rate and height of the final outlet to comply with the permissible concentration at regular intervals at the outlet of the factory.
Indoor air contaminated with various pollutants commonly poses a risk to human health, and the need for installing air purifiers has been increasing. However, in commercial air purifiers pollutants-removal efficiency and durability are generally low. Since silver nano-composites are known to have catalytic oxidation and antibacterial capacities, it was anticipated to be applicable for indoor air purifiers. In this study, silver nano-composites were applied to granular activated carbon and scrubber solutions to treat a mixture of three air pollutants including toluene, formaldehyde, and bioaerosol. In the activated carbon deposited with silver nano-particles, the specific surface area decreased, resulting in a 10% loss of adsorption capacity for toluene. However, the removal efficacy of formaldehyde and bioaerosol increased by 10% due to the catalytic oxidation and antibacterial capacities. In the scrubber operation with silver nano-particles, the removal rates of formaldehyde and bioaerosol improved by 20%, while toluene removal was not observed. When the activated carbon column and the scrubber was connected in series, toluene was mainly removed by the activated carbon, and the removal rates of formaldehyde and bioaerosol increased in the presence of silver nano-particles. Consequently, for the improvement of indoor air quality, it is deemed appropriate to apply silver nano-material to indoor environments contaminated with pollutant mixtures.
In this study, we evaluated the scent intensity, emotional response, and EEG response according to the concentration of bergamot scent inhaled by young women whose average age was 18, and analyzed the correlation between these factors. The correlation between bergamot concentration (P, vol %) and odor intensity (I) was [I] = 1.22 + 0.86P (r2 = 0.99). The scent intensity of bergamot was about 3.8. The emotional response to the scent of bergamot was rated as pleasant, fresh, refreshing and feminine. Inhaling bergamot decreased the α waves in the brain and increased the θ, β, and γ waves. Additionally, the edge frequencies of the SEF50 and SEF90 were increased by 0.14 Hz to 0.59 Hz and 0.75Hz to 1.26 Hz respectively by bergamot. The odor intensity (concentration) and emotional response regarding bergamot showed a weak correlation with the amount of change in the edge frequency (ΔSEF50 and ΔSEF90). These results suggest that bergamot is a refreshing, feminine fragrance with an arousing effect that activates the brain.
The objectives of this study were (i) to evaluate the effects of temperature and relative humidity on two electrochemical sensors measuring hydrogen sulfide and ammonia using a laboratory testing system for various sensors, and (ii) to propose a calibration method for those concentrations to collect more reliable monitoring data. The effect of temperature and relative humidity was tested under three different conditions, respectively. The linearities measured data under all different conditions for the relative humidity and temperature were excellent, indicating more than 0.99 of R2 for both odor sensors. Under the condition of zero concentration, baselines (intercepts) at zero increased with increasing relative humidity for both hydrogen sulfide and ammonia sensors. The rate of gas concentration according to ADC variation (slopes) increased with increasing relative humidity about only the hydrogen sulfide sensor. In this study, slope, and intercept are utilized for calibration of hydrogen sulfide and ammonia concentration, and the reliability of the data of hydrogen sulfide and ammonia sensors is further enhanced by the relational expression obtained by this paper.
Mold is one of the harmful biological pollutants in the indoor environment. To investigate how the contamination degree of mold existing in the indoor environment differs according to the characteristics of the house, the concentration of mold in the indoor air was investigated for the houses damaged by leakage or flooding. As a result of a survey of 20 houses located in Gyeonggi-do and Chungcheong-do, the concentration of mold in indoor air surprisingly exceeded more than two times the recommended indoor air quality standard of 500 CFU/m3 in all the houses investigated. The fungal concentration was high in houses with condensation and mold odors. As for the housing type, the pollution degree was higher in detached houses than in row houses. As for the type of water damage, mold contamination was higher in the leaky houses than in the flooded houses. The degree of mold concentration was 1,237 CFU/ m3 in the leaky houses. In terms of housing age, pollution was very high in houses over 20 years old. The occurrence of these measured mold concentrations was correlated at a significant level with respect to the properties of the house. This study shows that in the case of water damaged houses, careful management of mold contamination is required.
The effect of the change in air inflow velocity has been investigated at the opening of the malodor emission source to determine its influence on the Complex odor concentration. Both the Complex odor collection efficiency and concentrations were measured according to the change in airflow velocity. When the air inflow velocity was 0.1 m/s, it was observed that some of the generated gas streams were diffused to the outside due to low collection efficiency. In contrast, only the increased gas collection volume up to 0.5 m/s showed no substantial reduction of the Complex odor concentration, which indicates an increase in the size of the local exhaust system as well as the operation cost for the Complex odor control device. When the air inflow velocity reached 0.3 m/s, the Complex odor concentrations not only were the lowest, but the odorous gas could also be collected efficiently. The air inflow velocity at the opening of the malodor emission source was considered the key factor in determining the gas collection volume. Therefore, based on the results of this study, an optimal air inflow velocity might be suggestive to be 0.3 m/s.