검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Quality standards of activated carbon for gas-phase applications have been deleted from the Korean national standard list since 2007, and the iodine adsorption test is the only measure currently used for quality assurance. This study was performed to propose a suitable test method and a quality standard for gas-phase activated carbon. The "1/2 saturated vapor adsorption" test has been developed as a simple and convenient method to determine the adsorption capacity of activated carbon. In this study, the developed test method was evaluated using model VOCs including toluene, methyl ethyl ketone (MEK), and ethyl acetate (EA). A virgin activated carbon revealed adsorption capacities of 344mg/g, 322mg/g, and 328mg/g for toluene, EA, and MEK, respectively, and the adsorption capacity for a mixture of the three VOCs was 334 mg/g. When a regenerated activated carbon was applied, the adsorption capacities dramatically decreased to 62 mg/g, 52 mg/g, and 61 mg/ g for toluene, EA, and MEK, respectively. In addition, the 1/2 solvent vapor adsorption tests using 13 different specimens of activated carbon showed that their capacities were closely related to the iodine adsorption numbers, and this study suggested the adsorption capacity of 300 mg/g as a new quality standard. The novel test method and its standard may help to guarantee the quality of gas-phase activated carbon used for VOCs abatement processes.
        4,000원
        2.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Indoor air contaminated with various pollutants commonly poses a risk to human health, and the need for installing air purifiers has been increasing. However, in commercial air purifiers pollutants-removal efficiency and durability are generally low. Since silver nano-composites are known to have catalytic oxidation and antibacterial capacities, it was anticipated to be applicable for indoor air purifiers. In this study, silver nano-composites were applied to granular activated carbon and scrubber solutions to treat a mixture of three air pollutants including toluene, formaldehyde, and bioaerosol. In the activated carbon deposited with silver nano-particles, the specific surface area decreased, resulting in a 10% loss of adsorption capacity for toluene. However, the removal efficacy of formaldehyde and bioaerosol increased by 10% due to the catalytic oxidation and antibacterial capacities. In the scrubber operation with silver nano-particles, the removal rates of formaldehyde and bioaerosol improved by 20%, while toluene removal was not observed. When the activated carbon column and the scrubber was connected in series, toluene was mainly removed by the activated carbon, and the removal rates of formaldehyde and bioaerosol increased in the presence of silver nano-particles. Consequently, for the improvement of indoor air quality, it is deemed appropriate to apply silver nano-material to indoor environments contaminated with pollutant mixtures.
        4,000원
        3.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Odor emitted from the degradation process of food waste is a common cause of public complaints, and appropriate odor treatment methods need to be implemented. In this study, a hybrid plasma catalyst system was applied to treat individual odorous compounds including acetaldehyde and hydrogen sulfide, which are known to be major odor compounds produced from food waste. MnOx catalysts were prepared by varying Mn/support loading ratios, and surface analyses showed that the Mn_5% catalyst achieved the highest performance because dominant manganese oxide species on the surface of the catalyst was found to be Mn2O3, Using the catalyst, the removal rate of hydrogen sulfide steadily increased as the space velocity in the MnOx catalyst reactor decreased. Meanwhile, the removal rate of acetaldehyde did not increase significantly when decreasing the space velocity more than 24,000 hr-1. Following the catalyst experiments using the individual odorous compounds, the hybrid system was applied for testing odor treatment of actual food waste. The actual food waste study showed that both hydrogen sulfide and acetaldehyde were steadily removed; hydrogen sulfide was removed almost completely during the initial 30-minute period, while the acetaldehyde removal was started after the decrease of hydrogen sulfide. In addition, it was confirmed that the dilution-to-threshold for odor reduced from 2,080 D/T to 300 D/T during the initial period. In conclusion, the plasma and Mn2O3 catalyst system can be applied in food waste collection containers to effectively control odor problems.
        4,000원
        4.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Odor emitted from food waste is commonly known as a severe problem, and needs to be controlled to minimize public complaints against food waste collection systems. In this study, ozone oxidation with manganese oxide catalyst, which is known to effectively treat odorous substances at room temperature, was applied to remove acetaldehyde and hydrogen sulfide, the model odorous compounds from food waste. In addition, the effect of relative humidity (RH) on the ozone/catalyst oxidation was tested at 40%, 60%, and 80%. When the catalyst was not applied, the removal of acetaldehyde was not observed with the ozone oxidation alone. In addition, hydrogen sulfide was slowly oxidized without a clear relationship under RH conditions. Meanwhile, the ozone oxidation rates for acetaldehyde and hydrogen sulfide substantially increased in the presence of the catalyst, but the removal efficiencies for both compounds decreased with increasing RH. Under the high RH conditions, active oxygen radicals, which were generated by ozone decomposition on the surface of the catalyst, were presumably absorbed and reacted with moisture, and the decomposition rate of the odorous compounds might be limited. Consequently, when the ozone oxidation device with a catalyst was applied to control odor from food waste, RH must be taken into account to determine the removal rates of target compounds. Moreover, its effect on the system performance must be carefully evaluated.
        4,000원
        5.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, volatile organic compounds (VOCs) emitted from printing industries were analyzed, and an inorganic adsorbent, γ-alumina, was selected for the effective control of the VOC emissions. Printing processes commonly require inks, thinners, and cleaners, and they were mixed organic solvents containing aromatic compounds, ketones, and alcohols. Therefore, toluene, methyl ethyl ketone (MEK), and isopropyl alcohol (IPA) were selected as model compounds for this study. The adsorptive properties using γ-alumina were determined for the model compounds. Both batch isotherm and continuous flow column tests demonstrated that the adsorption capacity of MEK and IPA was 3~4 times higher than that of toluene. The column test performed at an inlet toluene concentration of 100 ppm showed that an 80% breakthrough for toluene was observed after 3 hours, but both MEK and IPA were continuously adsorbed during the same time period. A numerical model simulated that the γ-alumina could remove toluene at a loading rate of 0.4 mg/min only for a 4-hour period, which might be too short of a duration for real applications. Consequently, lifetime enhancement for γ-alumina must be implemented, and ozone oxidation and regeneration would be feasible options.
        4,000원
        6.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To abate the problem of odor from restaurants, a hybrid adsorbent consisting of organic and inorganic materials was developed and evaluated using acetaldehyde as a model compound was deveioped and evaluated. Powders of activated carbon, bentonite, and calcium hydroxide were mixed and calcinated to form adsorbent structure. The surface area of the hybrid adsorbent was smaller than that of high-quality activated carbon, but its microscopic image showed that contours and pores were developed on its surface. To determine its adsorption capacity, both batch isotherm and continuous flow column experiments were performed, and these results were compared with those using commercially available activated carbon. The isotherm tests showed that the hybrid adsorbent had a capacity 40 times higher than that of the activated carbon. In addition, the column experiments revealed that breakthrough time of the hybrid adsorbent was 2.5 times longer than that of the activated carbon. These experimental results were fitted to numerical simulations by using a homogeneous surface diffusion model (HSDM); the model estimated that the hybrid adsorbent might be able to remove acetaldehyde at a concentration of 40 ppm for a 5-month period. Since various odor compounds are commonly emitted as a mixture when meat is barbecued, it is necessary to conduct a series of experiments and HSDM simulations under various conditions to obtain design parameters for a full-scale device using the hybrid adsorbent.
        4,000원
        7.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The metal plating industry produces a large amount of wastewater generally containing heavy metals with various chemical compounds; as such, treating the wastewater is both an environmental and an economic challenge. A vacuum evaporation system has been developed to effectively reduce the volume of plating wastewater. However, the gas stream discharged from the distillation unit of the evaporator is often contaminated with high concentrations of odorous compounds such as ammonia and dimethyl disulfide (DMDS). In this study, a non-thermal plasma process operated in wet conditions was applied to remove the odorous compounds, and it showed high removal efficiencies of greater than 99% for ammonia and 95% for DMDS. However, the gas flowrate more substantially affected the efficiency of ammonia removal than the efficiency of DMDS removal, because the higher the gas flowrate, the shorter the contact time between the odorous compound and the mist particles in the wet plasma reactor. The analyses of the maximum removal capacity indicated that the wet non-thermal plasma system was effective for treating the odorous compounds at a loading rate of less than 20 mg/m3/min even though the lowest amount of electrical power was applied. Therefore, the wet-type non-thermal plasma system is expected alleviate to effectively abate the odor problem of the vacuum evaporator used in the treatment of plating wastewater.
        4,000원
        8.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: In this study, alkali-activated blast-furnace slag (AABFS) was investigated to determine its capacity to absorb carbon dioxide and to demonstrate the feasibility of its use as an alternative to ordinary Portland cement (OPC). In addition, this study was performed to evaluate the influence of the alkali-activator concentration on the absorption capacity and physicochemical characteristics. METHODS: To determine the characteristics of the AABFS as a function of the activator concentration, blast-furnace slag was activated by using calcium hydroxide at mass ratios ranging from 6 to 24%. The AABFS pastes were used to evaluate the carbon dioxide absorption capacity and rate, while the OPC paste was tested under the same conditions for comparison. The changes in the surface morphology and chemical composition before and after the carbon dioxide absorption were analyzed by using SEM and XRF. RESULTS: At an activator concentration of 24%, the AABFS absorbed approximately 42g of carbon dioxide per mass of paste. Meanwhile, the amount of carbon dioxide absorbed onto the OPC was minimal at the same activator concentration, indicating that the AABFS actively absorbed carbon dioxide as a result of the carbonation reaction on its surface. However, the carbon dioxide absorption capacity and rate decreased as the activator concentration increased, because a high concentration of the activator promoted a hydration reaction and formed a dense internal structure, which was confirmed by SEM analysis. The results of the XRF analyses showed that the CaO ratio increased after the carbon dioxide absorption. CONCLUSIONS : The experimental results confirmed that the AABFS was capable of absorbing large amounts of carbon dioxide, suggesting that it can be used as a dry absorbent for carbon capture and sequestration and as a feasible alternative to OPC. In the formation of AABFS, the activator concentration affected the hydration reaction and changed the surface and internal structure, resulting in changes to the carbon dioxide absorption capacity and rate. Accordingly, the activator ratio should be carefully selected to enhance not only the carbon capture capacity but also the physicochemical characteristics of the geopolymer.
        4,000원
        9.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Odor compounds and air-born microorganisms are simultaneously emitted from various aeration processes such as aerobic digestion, food-waste compositing, and carcass decomposition facilities that are biologically-treating wastes with high organic contents. The air streams emitted from these processes commonly contain sulfur-containing odorous compounds such as hydrogen sulfide(H2S) and bacterial bioaerosols. In this study, a wet-plasma method was applied to remove these air-born pollutants and to minimize safety issues. In addition, the effects of a gas retention time and a liquid-gas ratio were evaluated on removal efficiencies in the wet-plasma system. At the gas reaction time of 1.8 seconds and the liquid-gas ratio of 0.05 mLaq/Lg, the removal efficiency of bioaerosol was approximately 75 %, while the removal efficiency of H2S was lower than 20 %, indicating that the gaseous compound was not effectively oxidized by the plasma reaction at the low liquid addition. When the liquid-gas ratio was increased to 0.25 mLaq/Lg, the removal efficiencies of both H2S and bioaerosol increased to greater than 99 %. At the higher liquid-gas ratio, more ozone was generated by the wet-plasma reaction. The ozone generation was significantly affected by the input electrical energy, and it needed to be removed before discharged from the process.
        4,000원
        10.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        2010년 전국적으로 소, 돼지와 같은 동물에 구제역이 발병하였고, 이에 전국에 약 4,800여개의 매몰지가 긴급 조성되고 약 300만 마리의 동물들을 살처분 되었다. 이렇게 조성된 매몰지 내부에서는 가축사체가 부패하는 과정에서 황화수소, 메르캅탄류, 아민류 와 같은 악취물질이 생성되고, 매몰지 이설과정에서 대기 중으로 확산된다. 본 연구에서 는 가축 매몰지 이설과정 중에 발생하는 황 계열 물질을 저온 플라즈마 시스템을 적용하 여 저감하고자 하였다. 특히 플라즈마 시스템에서 상대습도에 따른 황화수소와 다이메틸 다이설파이드(DMDS) 제거량 변화를 실험적으로 확인하였다. 동일한 유입 조건에서 상대 습도가 증가함에 따라 황화수소와 DMDS의 제거율은 증가하였고, 이는 상대습도가 높아 지면서 발생하는 오존량이 증가하였기 때문이었다. 황화수소와 DMDS의 오존 반응식을 깁스 자유에너지로 비교해보면 DMDS의 오존 산화가 더 높은 에너지를 방출하는 것으로 나타나며, 이에 따라 황화수소보다는 DMDS가 먼저 오존에 의해 산화되며 남은 황화수 소는 촉매 층에서 추가 반응하는 것으로 판단된다.
        4,000원
        11.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most wastewater treatment plants are facing odor and sludge disposal problems. In this lab-scale study, odor and sludge from wastewater treatment processes were treated using a combined non-thermal plasma and sludge reactor. The hydrogen sulfide concentration introduced to the reactor was varied at 10, 20, and 50 ppm, and its removal efficiency and system performance were determined. Ozone was produced by the plasma reaction at a concentration of 200 ppm under the given condition. 80% of the hydrogen sulfide was removed regardless of its introduced concentration. In addition, due to the ozone carried over to the sludge reactor, the organic constituents in the waste sludge in terms of TCOD decreased by 30%. The ion concentrations of HS- and SO₄²⁻ in the sludge increased during the four hour experimental period. As a result, the plasma oxidation system can treat waste sludge effectively for the simultaneous reduction of sludge volume and odor.
        4,000원
        12.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Silver nano-particles, that were either attached on granular activated carbon or dispersed in a liquid solution, were applied to investigate the removal efficiency of airborne bacteria. The antibacterial experiments were performed by changing the gas residence time in a GAC filtration column and a scrubber module. The GAC filter experiment showed that the antibacterial efficiency declined with time at a gas residence time (RT) of 0.02 second, and the bacterial quantity in the outlet of the column exceeded that of the inlet after 30 hours of operation. However, when using Ag-GAC, the removal efficiency was higher than that of the GAC, and it was maintained over a 3-day period. The experiment results at different gas RTs of 3, 1.5 and 0.5 seconds also showed that Ag-GAC had higher antibacterial efficiencies. The low antibacterial efficiency at a short RT indicates that a careful consideration needs to be implemented for the design of indoor air purification devises. In the scrubber experiment using distilled water, a removal efficiency of 50% was observed initially; however, it declined gradually and the outlet bacterial quantity was even higher than that of the inlet. This result was mainly due to the accumulation of bacteria in the recirculating solution. Contrarily, another scrubber experiment using silver nano-particle solution showed that an antibacterial efficiency of 66% was maintained over a 3-day period. Silver nano-particles were able to minimize the growth of microorganisms in the spray solution, and it resulted in an improved and stable efficiency for the airborne bacterial control.
        4,000원
        13.
        2017.10 KCI 등재 서비스 종료(열람 제한)
        In this study, alkali-activated slag (AAS) concrete made with blast furnace slag (BFS) was investigated as a replacement for ordinary Portland cement (OPC) concrete for changes in the compressive strength before and after CO2 exposure and chemical reactions with CO2. Before CO2 exposure, the compressive strength of AAS concrete was found to be up to 21 MPa, which was higher than that of OPC concrete. Exposing AAS concrete to CO2 at 5,000 ppm for 28 days did not significantly change the compressive strength. In contrast, the compressive strength of OPC concrete decreased by 13% in the same conditions. In addition, AAS concrete had the highest CO2 capture capacity of greater than 50 g CO2/kg, while the CO2 capture capacity of OPC concrete was only 2.5 g CO2/kg. Rietveld analyses using XRD results showed that fractions of main calcium-silicate-hydration (C-S-H) gels on the surface of AAS concrete did not significantly drop after CO2 exposure; the C-S-H gel on the AAS concrete was continuously produced by reacting with the SiO2 produced after the reaction with CO2 and Ca(OH)2 inside the concrete, with the result that the compressive strength of AAS concrete did not change after CO2 exposure. Thus, AAS concrete can be applied to CO2-rich environments as both a stable construction material and a CO2 sequestrate agent.
        14.
        2016.11 서비스 종료(열람 제한)
        최근 온실가스에 의한 지구온난화에 대한 국내외의 관심이 급증하여, 주요 선진국을 필두로 하여 국제적인 협약 체결을 맺어 온실가스를 감축하고자 노력하고 있다. 한국도 온실가스 저감 목표를 세우고 이를 달성하기 위해 다양한 분야에서 관련 기술을 개발하고 있다. 특히, 한국 온실가스 배출 분야에서 온실가스 감축 잠재력이 비교적 큰 것으로 알려진 콘크리트의 주재료인 시멘트에 의한 온실가스 저감 연구가 활발하게 진행되고 있으며, 이는 한국뿐만 아니라 국제적으로 공통적인 큰 관심 연구 분야이다. 시멘트의 1 ton 생산 시에는 주요 온실가스인 이산화탄소가 0.7~1.0 ton 배출되는 것으로 알려져 있으며, 이는 전체 이산화탄소 배출량의 7~8%를 차지한다. 따라서 콘크리트 제조 시에 시멘트를 대신하여 고로슬래그, 플라이애쉬 등의 산업부산물을 활용하여, 시멘트 사용량을 줄여서 이산화탄소 배출량을 저감하고자하는 연구가 활발하게 진행되고 있다. 본 연구에서는 산업부산물을 적용한 알칼리 활성 콘크리트의 탄소 흡수 및 물리역학적 특성을 확인하여 실제 시멘트 대체용으로 활용 가능성을 확보하고자 하였다. 콘크리트 제조 시에 첨가되는 시멘트를 고로슬래그 및 플라이애쉬로 대체함으로써, 시멘트 사용량 저감을 통해 간접적으로 이산화탄소의 배출을 줄이고, 활성화시킨 고로슬래그를 활용하여 직접적으로 이산화탄소를 포집하였다. 또한 양생조건에 따른 이산화탄소 흡수능 및 이산화탄소 흡수 전후의 화학적 특성을 확인하고자 20~80℃ 범위에서 양생한 시료의 이산화탄소 흡수 및 물리역학적 특성을 비교하였다. 탄소 포집용 알칼리 활성 콘크리트를 제작함에 앞서, 기초 실험을 통해 다양한 산업부산물 중에서 이산화탄소 활성화제 및 시멘트 대체용으로 동시에 활용 가능한 최적의 산업부산물로 고로슬래그를 선정하였다. 고로슬래그의 수경성 확보를 위해 수산화칼슘 및 규산나트륨을 활성화제로 사용하였다. 바인더와 활성화제, 증류수를 투입하여 혼합한 알칼리 흡수제는 질소 충진한 항온 챔버에서 24시간 동안 보관하였다. 20℃에서 양생한 시료의 이산화탄소 흡수량은 51.5 g-CO2/kg였으며, 40℃에서 양생할 때 이산화탄소 흡수량은 59.3g-CO2/kg으로 가장 높았으나, 60, 80℃에서 양생한 시료의 경우 CO2 흡수량이 20, 40℃에서 양생한 시료에 비해 낮았다. 압축강도를 측정한 결과도 이산화탄소 흡수 실험결과와 동일한 추세를 보였다. 이산화탄소 흡수 및 압축강도 실험결과들을 바탕으로, 본 연구에서 개발한 알칼리 활성 콘크리트는 이산화탄소 흡수제 기능을 갖는 건축재료로써 활용이 가능하며, 특히 40℃에서 양생 할 경우 알칼리 활성 콘크리트의 이산화탄소 흡수능이 극대화 될 것으로 판단된다.
        15.
        2013.11 서비스 종료(열람 제한)
        최근 화력발전소나 철강 산업에서 발생하는 산업폐기물의 재활용 방법 및 사용처에 대한 연구가 주목을 받고 있다. 기존의 산업폐기물의 경우 해안 및 육상 매립에 의해 처리되고 있어서 매립지 확보에 어려움이 있고, 매립 시 발생하는 침출수 및 분진이 많은 환경문제를 유발하여 환경적・경제적 부담이 되고 있다. 이에 산업폐기물을 자원으로써 재활용하려는 방안에 대한 다양한 연구가 이루어지고 있다. 현재 산업폐기물은 주로 시멘트 대체물로써 사용되고 있으며, 이는 최근에 국제적으로 주목을 받고 있는 이산화탄소 방출량을 감소하기 위한 방안 중 하나로 주목받고 있다. 일반적으로 1 ton의 시멘트를 생산할 때 0.8 ton의 이산화탄소가 발생하는 것으로 기존의 연구들을 통해 알려진 바 있다. 국내외에서 시멘트를 대신할 수 있는 재료로써 화력 발전소에서 대량으로 발생하는 플라이애쉬나 철강 산업에서 발생하는 고로슬래그와 같은 폐자원 활용을 통한 연구가 진행되고 있다. 현재 발생하는 석탄회 중 58% 정도를 시멘트 대체물 혹은 콘크리트용 혼화재 등으로 재활용하고 있고, 고로슬래그의 경우는 발생하는 양의 대부분을 재활용하고 있다. 본 연구에서는 산업폐기물을 시멘트 대용으로 적용한 알칼리 활성 시멘트에 대한 활용가능성을 확인하였으며, 실제 현장에서 시멘트 대체용으로 사용할 수 있도록 이산화탄소 흡수능과 압축강도를 동시에 확보하고자 하였다. 이에 콘크리트 제조 시에 첨가되는 시멘트를 고로슬래그 및 플라이애쉬로 대체함으로써, 시멘트 사용량 저감을 통해 간접적으로 이산화탄소의 배출을 줄이고, 활성화시킨 고로슬래그를 활용하여 직접적으로 이산화탄소를 포집하고자 하였다. 알칼리 흡수제를 제작함에 있어 바인더로써는 고로슬래그 및 플라이애쉬를 적용하였고, 활성화제로써 수산화칼슘 및 규산나트륨을 투입하였다. 제조된 알칼리 시멘트의 이산화탄소 흡수제로써의 효능을 확인하기 위하여 실험실 규모의 column test를 통해 CO₂ 흡착능을 평가하였다. 또한 시멘트 대체용으로써의 적용 가능성을 확인하기 위해 알칼리시멘트를 사용한 페이스트와 모르타르의 배합실험을 진행하고 60℃의 고온 양생과 항온 양생의 두 조건에서 양생시키고 3일 후의 압축강도를 측정하였다. 플라이애쉬의 경우 20 mg-CO₂/㎏-흡수제 이상, 고로슬래그의 경우 27 mg-CO₂/㎏-흡수제 이상의 이산화탄소 흡착능을 보였다. 플라이애쉬의 경우 양생 조건에 상관없이 약간의 외력에도 변형이 생기는 정도로 경화가 진행되지 않아서 강도 발현이 불가하였으나, 고로슬래그의 경우 두 양생 조건에서 모두 15 ~ 17 MPa의 압축강도를 나타내었다. 실제 구조물로써 사용하기 위해서는 최소 20 MPa 이상의 압축강도가 요구되어지므로 향후 CO₂ 흡착능을 증대시키고 동시에 보다 높은 압축강도를 확보할 수 있도록 배합수 비율, 활성화제 종류, 배합비율에 관한 추가 연구가 필요할 것으로 사료된다.