Hydrogen sulfide (H2S) emitted from various sources is a major odorous compound, and non-thermal plasma (NP) has emerged as a promising technique to eliminate H2S. This study was conducted to investigate lab-scale and pilot-scale NP reactors using corona discharge for the removal of H2S, and the effects of relative humidity, applied electrical power on reactor performance and ozone generation were determined. A gas stream containing H2S was injected to the lab-scale NP reactor, and the changes in H2S and ozone concentration were monitored. In the pilotscale NP experiment, the inlet concentration and flow rate were modified to determine the effect of relative humidity and applied power on the NP performance. In the lab-scale NP experiments, H2S removal was found to be the 1st-order reaction in the presence of ozone. On the other hand, when plasma reaction and ozone generation were initiated after H2S was introduced, the H2S oxidation followed the 0th-order kinetics. The ratio of indirect oxidation by ozone to the overall H2S removal was evaluated using two different experimental findings, indicating that approximately 70% of the overall H2S elimination was accounted for by the indirect oxidation. The pilotscale NP experiments showed that H2S introduced to the reactor was completely removed at low flow rates, and approximately 90% of H2S was eliminated at the gas flow rate of 15 m3/min. Furthermore, the elimination capacity of the pilot-scale NP was 3.4 g/m3·min for the removal of H2S at various inlet concentrations. Finally, the experimental results obtained from both the lab-scale and the pilot-scale reactor operations indicated that the H2S mass removal was proportional to the applied electrical power, and average H2S masses removed per unit electrical power were calculated to be 358 and 348 mg-H2S/kW in the lab-scale and the pilot-scale reactors, respectively. To optimize energy efficiency and prevent the generation of excessive ozone, an appropriate operating time of the NP reactor must be determined.
Odor compounds and air-born microorganisms are simultaneously emitted from various aeration processes such as aerobic digestion, food-waste compositing, and carcass decomposition facilities that are biologically-treating wastes with high organic contents. The air streams emitted from these processes commonly contain sulfur-containing odorous compounds such as hydrogen sulfide(H2S) and bacterial bioaerosols. In this study, a wet-plasma method was applied to remove these air-born pollutants and to minimize safety issues. In addition, the effects of a gas retention time and a liquid-gas ratio were evaluated on removal efficiencies in the wet-plasma system. At the gas reaction time of 1.8 seconds and the liquid-gas ratio of 0.05 mLaq/Lg, the removal efficiency of bioaerosol was approximately 75 %, while the removal efficiency of H2S was lower than 20 %, indicating that the gaseous compound was not effectively oxidized by the plasma reaction at the low liquid addition. When the liquid-gas ratio was increased to 0.25 mLaq/Lg, the removal efficiencies of both H2S and bioaerosol increased to greater than 99 %. At the higher liquid-gas ratio, more ozone was generated by the wet-plasma reaction. The ozone generation was significantly affected by the input electrical energy, and it needed to be removed before discharged from the process.
2010년 전국적으로 소, 돼지와 같은 동물에 구제역이 발병하였고, 이에 전국에 약 4,800여개의 매몰지가 긴급 조성되고 약 300만 마리의 동물들을 살처분 되었다. 이렇게 조성된 매몰지 내부에서는 가축사체가 부패하는 과정에서 황화수소, 메르캅탄류, 아민류 와 같은 악취물질이 생성되고, 매몰지 이설과정에서 대기 중으로 확산된다. 본 연구에서 는 가축 매몰지 이설과정 중에 발생하는 황 계열 물질을 저온 플라즈마 시스템을 적용하 여 저감하고자 하였다. 특히 플라즈마 시스템에서 상대습도에 따른 황화수소와 다이메틸 다이설파이드(DMDS) 제거량 변화를 실험적으로 확인하였다. 동일한 유입 조건에서 상대 습도가 증가함에 따라 황화수소와 DMDS의 제거율은 증가하였고, 이는 상대습도가 높아 지면서 발생하는 오존량이 증가하였기 때문이었다. 황화수소와 DMDS의 오존 반응식을 깁스 자유에너지로 비교해보면 DMDS의 오존 산화가 더 높은 에너지를 방출하는 것으로 나타나며, 이에 따라 황화수소보다는 DMDS가 먼저 오존에 의해 산화되며 남은 황화수 소는 촉매 층에서 추가 반응하는 것으로 판단된다.
도시지역 합류식 하수배제 설비인 우수받이 및 하수관거, 정화조 등에는 유기성 고형 물이 퇴적되기 쉬우며, 유기성 퇴적물이 부패되는 과정에서 고농도의 황계열 악취물질이 발생한다. 본 연구에서는 전기산화방식을 이용하여 유기성 퇴적물 내에 용존된 악취물질 및 전구물질을 저감시켜, 하수관거에서 기상으로 배출되는 악취 문제를 해결하고자 하였다. 실험실 규모의 밀폐된 회분식 반응기에 하수슬러지(COD 기준 8,000 ~ 28,000 mg·L-1)를 투입하고, 발생되는 악취물질 농도와 악취발생특성을 조사하였다. 여기에 전기산화시스템 을 적용하여 황계열 악취물질과 전체 유기물의 산화 및 분해실험을 진행하였다. 전기산 화 실험을 진행한 결과, 밀폐된 반응기의 기상에서 450 ppm의 고농도로 발생한 황화수 소가 반응 30분 이내에 검출한계 이하까지 제거되었으며, 메틸머켑탄과 디메틸설파이드 는 85% 이상 제거되었다. 투입된 전기에너지당 황계열 악취물질의 제거율은 최대 0.33 mg-S·kJ-1로 나타났다. 또한 1시간의 반응기간 동안 회분식 반응기 내에서 황계열 악취물 질 뿐만 아니라 고농도 퇴적물에 함유된 전체 유기물 농도가 56% 감소하여, 전기산화시 스템이 악취를 유발하는 유기성 전구물질을 동시에 저감하는 효과를 나타내었다. 결과적 으로 최소한의 전기에너지를 이용하여 하수관거 퇴적 유기물에 의한 악취문제를 해결할 수 있을 것으로 기대된다