한국에서 알스트로메리아(Alstroemeria)는 저온 작물로 난 방비 절감 효과가 있고 장식용 절화 소재로 꾸준히 소비되어, 일정 재배면적이 유지되고 있다. 본 연구는 알스트로메리아 ‘한에로스’의 기내 대량증식과 뿌리 발근 조건을 구명하고 무 균묘 생산 시스템을 구축하기 위해 수행했다. 기내 대량 증식 조건 구명 실험에는 Murashige and Skoog(MS) 배지(3% sucrose, 0.25% gelrite)에 BA 단용 처리(BA 0.25, 0.5, 0.75mg・L-1)와 NAA 0.2mg・L-1에 BA를 농도(BA 0.25, 0.5, 0.75mg・L-1)에 따라 혼용 처리하였다. 발근 조건 구명을 위 해 MS배지(3% sucrose, 0.25% gelrite)에 BA 0.25 mg・L-1 단용 처리와 BA 0.25mg・L-1에 NAA를 농도(NAA 0.1, 0.2, 0.3mg・L-1)에 따라 혼용 처리하였다. 뿌리줄기 증식 실험 결 과, 호르몬 첨가에 따른 생육차이는 뿌리줄기 수를 제외한 나 머지 부분에서 뚜렷하게 확인되었다. 단용 처리구 보다 혼용 처리구에서 많은 신초가 유도되었다. BA 0.5mg・L-1와 NAA 0.2mg・L-1 혼용 배지에서 가장 많은 1.43개의 신초가 유도되 었다. 발근 실험 결과, ‘한에로스’는 BA 0.25mg・L-1 와 NAA 0.3mg・L-1 혼용 배지에서 뿌리 수가 3.96개로 가장 많고, 뿌 리가 짧고 두꺼워 순화 과정 중에 뿌리 손실이 적었다. 또한, 순화 과정 중 묘가 고사하지 않았다. 종합적으로, ‘한에로스’ 는 BA 0.5mg・L-1와 NAA0.2 mg・L-1 혼용 배지에서 증식을 하는 것이 적절하며, BA 0.25mg・L-1와 NAA 0.3mg・L-1 혼 용 배지에서 발근 후 순화하는 것이 최적의 기내 배양 조건으 로 사료된다. 본 연구의 결과로 알스트로메리아 무균묘의 보 급 확대에 기여하고자 한다.
High concentrations of PM2.5 were generated in new apartments before moving in, and PM2.5 reduction efficiencies using air cleaners and ventilation systems were evaluated. The experimental results for different air cleaner capacities showed that the PM2.5 reduction efficiencies for 46.2 m2, 66 m2, and 105.6 m2 areas were 81.7%, 92.9%, and 92.5%, respectively. Thus, the larger the air cleaning application area, the higher the PM2.5 reduction efficiency. However, there was no difference in the efficiency of overcapacity air cleaners above a certain capacity. The efficiencies of air cleaners located at the living room center, interior wall, and edge were 81.7%, 79.2%, and 75.8%, respectively. There was, therefore, no significant difference in the PM2.5 reduction efficiencies of air cleaners in different locations. Furthermore, the PM2.5 reduction efficiencies at distances of 1 m, 2 m, and 3 m were 81.7%, 81.3%, and 81.7%, respectively. Therefore, there was also no significant difference in efficiency with distance. The PM2.5 concentration decreases rapidly during natural ventilation. Therefore, when the indoor PM2.5 is higher than the outdoor PM2.5, the air cleaner should be used after natural ventilation. The efficiency of PM2.5 reduction using an air supply-type ventilation system in apartments was 35%, which is not high. The simultaneous operation of the ventilation system and kitchen range hood was effective, showing a PM2.5 reduction efficiency of 69.1%. However, a water sprayer was not effective, showing a PM2.5 reduction efficiency of 24.3%. The results of this study suggest that PM2.5 reduction performance should be standardized by evaluating the efficiency of different ventilation systems. Effective usage and maintenance standards for ventilation systems need to be disseminated, and ventilation systems and air cleaners should be used effectively.
This study was performed to evaluate the odor occurrence of offensive leather odor in a district in Gyeonggi-do, where Jeil industrial complex is located, and its residential district, by using olfactory field frequency measurement (Gird Method). In addition, we measured the composite odor. The target points were 9 spots in Jeil industrial complex and 12 spots in the residential district, and we conducted the measurements 13 times each spot. As a result, odor occurrence in descending order was investigated as follows, leather industry > drug industry > food industry. Moreover, odor exposure of the industrial complex exceeded the industrial zone standard of 0.15 (=German odor standard) in all 9 spots (average 0.78). In addition, odor exposure of the residential district exceeded the residential zone standard of 0.10 (=German odor standard) in 12 spots (average 0.78). All the composite odors were below 20 (industrial zone standard). However, as the odor intensity of the sampling site and the lab analysis data showed a large deviation, we found that much supplementation is needed of the odor analysis techniques in the equipment measurement methods.
국내 출원 예정인 알스트로메리아 유망 교잡 계통 C269의 기내번식체계 조건 구명을 통해 국산묘의 안정적인 보급에 기 여하고자 본 연구를 수행하였다. 생장점을 MS배지에 치상하 여 초대배양 후, 준비된 근경 생장점은 근경 증식을 위해 6-Benzylaminopurin(BAP)와 Kinetin(KIN)처리를 하였다. KIN 처리구의 경우, 신초 발생량이 많고 조밀하게 생장 했다. 이는 근경 증식을 위한 근경 분리가 힘들어 근경 증식에는 적합하 지 않았다. BAP 처리구의 경우 0.2mg·L-1이하의 농도 배지 에서 키운 근경을 분리하여 증식 시키는 것이 적합할 것으로 생각되었다. 뿌리 발근 배지는 1-Naphthaleneacetic acid(NAA) 0.25mg·L-1첨가 배지에서 가장 많은 뿌리가 발생되었다. 하 지만, NAA 호르몬 처리에 의한 비정상적인 뿌리 비대가 발생 되었다. 반대로 무처리구에서는 정상적인 뿌리, 세근 및 뿌리 털 발생이 더 좋았다. 순화 과정 중에는 호르몬 처리구 보다 무처리구가 많은 생존률을 보였을 뿐만 아니라 신초 발생 및 지상부 생육도 무처리구에서 왕성하였다. 결론적으로 알스트 로메리아 교잡 계통 C269는 BAP 0.2mg·L-1처리에서 근경을 증식한 후 MS 배지로 옮겨 치상 후 발근을 유도하여 순화를 시키는 것이 효과적인 증식체계로 판단되었다.
This study was conducted to investigate the actual condition of fine particles (PM2.5) pollution and to verify the necessity of managing PM2.5 in the indoor environment of public use facilities in Gyeonggi-do. As a result, it was found that PM2.5 concentrations measured for 24 hours ranged from 15.9 to 113.5 μg/m3 and averaged 42.5 μg/ m3, and for 6 hours, ranged from 20.4 to 167.1 μg/m3 and averaged 65.6 μg/m3. Average concentration was highest in subway stations, followed by nursery schools and indoor parking lots. 49 of the 55 sites investigated exceeded the 24hr-PM2.5 standard specified in WHO guidelines (25 μg/m3). The ratio of PM2.5 to PM10 was 70.2% for 24hr and 70.7% for 6hr on average. This means that PM2.5 tends to account for a large proportion of the total particulate pollution in the indoor environment, and that it is essential to control fine particulate matter in order to reduce total particulate matter in the indoor environment. In addition, it was found that the time to be sampled and total sampling time are one of important factors which affect PM2.5 concentration in indoor air quality; therefore, I think that it is necessary to concretely specify the time to be sampled and maximum range of total sampling time in the test method of PM2.5. Recently, regulations on PM2.5 in indoor environments have been strengthened in other countries due to its high risk to human health; however, there is currently no enforceable regulation in Korea. Given that PM2.5 is more harmful to human health than PM10, it is urgently necessary to establish proper policies and regulations to control PM2.5 in indoor environments.
심비디움과 팔레놉시스의 형질전환 효율이 본 연구에서 비교되었 는데, 이를 위해 선발유전자로 PPT(Phosphinothricin) 제초제 저항 성인 bar 유전자가 사용되었고, 도입된 노화지연 유전자인ORE 7은 잎과 꽃에서 노화를 지연시켜 주며, 또한 개화 수를 늘려주는 형질 전환 식물체 개발에 이용될 것이다. 형질전환 방법 비교실험에서 심 비디움과 팔레놉시스 모두 아그로박테리움 방법이 유전자총 방법보 다 높은 효율을 보여 주었다. 또한 전반적으로 심비디움의 형질전환 효율이 팔레놉시스의 효율보다 높았음이 관찰되었다. 아그로박테리움 접종 전에 유전자총으로 미리 물리적 상처를 주어 접종효율은 높여 궁극적으로 형질전환 효율을 높이고자 수행한 실험에서는 오히려 무 처리구보다 더 낮은 형질전환 효율을 관찰하였다. 아그로박테리움 감 염 전 건조처리를 통한 형질전환 효율향상 실험에서는 심비디움의 경우 45분이 20%의 형질전환 효율로서 효율이 10% 미만인 대조 구보다 우수하였고, 팔레놉시스는 60분 건조처리가 가장 우수하였다. 형질전환 개체들의 PCR 분석을 통해 노화지연유전자ORE7이 도입 되었음을 확인하였고, real-time PCR 검정을 통해 도입된 형질전 환 유전자 copies를 확인하였다. 그결과, 전체 24개의 분석된 형질 전환 개체 중 심비디움 15개체 중 8 개체가 1 copy를 가지고 있 었고 나머지 7 개체는 2-3 copies를 가지고 있었다. 팔레놉시스는 오직 1개체만 1 copy 였고, 나머지 8개체는 2 copies 이상의 유 전자가 도입되었다. 본 연구에서 개선된 형질전환 체계는 앞으로 심 비디움과 팔레놉시스 형질전환 체계를 효과적으로 확립하는데 응용 될 것이라 판단된다.
Odorous compounds were monitored and dispersion modeling was conducted using AERMOD model. for Songtan Industrial Complex (SIC) located in Mogok-dong, Pyeongtaek city. The complex odor at the target area showed an average dilution ratio of 4.5 and low ammonia concentrations were observed (78.3 ppb). Sulfide, methyl iso-buthyl ketone, methyl ethyl ketone and styrene were not detected. The toluene concentration showed as 1233.3 ppb, which was the highest in the target compounds. The diffusion effect of odorous pollutants by wind was confirmed by descending order of concentration, inner-SIC (282 ppb) > downwind site (182 ppb) > upwind site (11.6 ppb). The results of the modeling demonstrated that the complex odors on the west and, south, north and east of the boundaries were dilution ratios of 10 24 and 20, respectively indicating the north and the east of SIC were more vulnerable to odor pollution than other regions.
This study was conducted to induce the effective counterplan of odor management in the Sihwa industrial complex(SIC) utilizing to CALPUFF model with sensory odor. The CALPUFF model was applied to simulate a sensory odor, and was evaluated for odor applicability and the distribution status of odor in SIC was predicted. The simulated concentration showed lower than observed concentration but the prediction of odor was so excellent. The simulation result of CALPUFF model for SIC showed that annual mean odor unit was 5∼7 OU/㎥ (min. 3 OU/㎥, max. 25 OU/㎥). The annual mean odor unit in residential area was not high as 1∼3 OU/㎥ but was predicted to be affected by the weather status in the industrial complex. The odor emission sources of high concentration were distributed in the seashore. Therefore the management of the high concentration sources will be further demanded.
현행 우리나라의 일조규정은 공동주택 및 일반 건축물을 중심으로 되어있기 때문에 도로 및 고가 구조물의 특성을 충분히 반영하지 못하고 있다. 또한, 공동주택간의 인동간격 및 인동간격이 미치는 다양한 영향에 대한 연구는 많이 이루어지고 있으나, 도로 및 고가 구조물과 주거지역과의 이격거리 및 구조물에 의해 발생되는 일조장애들의 환경적인 요소와 그에 따른 인자에 관한 연구는 미비하다. 따라서 본 연구에서는 도로 및 고가 구조물 중 주거지역과 인접해 있는 고가구조물을 중심으로 일조환경을 검토하여, 현재 사용되는 이격거리의 적정성 여부를 검토해보고, 구조물의 방위각에 따른 방향별 특성을 분석하였다. 구조물의 특성에 따른 일영거리를 통해 높이에 따른 이격거리비율을 산정하여, 향후 건설시 발생되는 일조장애를 최소화 하기위하여 구조물에 관한 제도 정비의 필요성과 최소 이격거리산정에 필요한 기초자료를 제시하는데 주목적을 두었다.
In order to improve the management of food waste treatment facility, this study investigated the emission characteristics of odorous compounds around treatment process and deodorization equipment of three food waste treatment facilities(the transformation, feed production and composting facility). Furthermore, the removal experiment of odorous compounds using various absorbent was conducted.
The odor concentrations of food waste storage hopper and separation process were higher than other processes and the major odorous compounds were methyl mercaptan, acetaldehyde, hydrogen sulfide and ammonia. The odor removal efficiencies of deodorization equipment such as activated carbon tower, wet scrubber and biofilter were mostly insufficient. Especially, the removal efficiency of wet scrubber is lower than the others, therefore the improvement of optimal operating condition is required. As a result of removal experiment of various absorbent, the removal efficiency was over 98% in case of 1% H₂SO₄+K₂HPO₄ for ammonia, KMnO₄ for acetaldehyde and KMnO₄ and 5% NaOH+KH₂PO₄ for hydrogen sulfide and methyl mercaptan. To achieve the effective odor control of food waste treatment facility, it is necessary increasing the removal efficiency of scrubber by using optimal absorbent for target odorous compounds.
We studied an analytical method for 4 organic acids will be regulated in 2010 using on-line thermal desorber with gas chromatograph/flame ionization detector. Results for each compounds showed good linearity(r² > 0.99) and good precision(RSD < 3%). Minimum detection limit values are about 2~3ppb when we sampled 1.5 L. These values will be reduced to 0.4~0.5 ppb when sampling 10L. We analyzed the 56 ozone precursor standard gas using the same method to see if there are any peaks to be overlapped in ambient air and the results showed that there is no peak overlapped. The linearity, precision and MDL in this study satisfied the guideline of Korean standard method for 4 organic acids. This analytical method in this study could be utilized effectively as on-line monitoring instrument to detect 4 organic acids.
강도한계 이선형 단자유도 시스템의 지진 하중 하에서의 동적 불안정에 대해 연구하였다. 강도한계 이선형 이력 모델은 철골 모멘트 골조의 이력거동을 가장 잘 모사한다. 단자유도 시스템의 동적 불안정을 판단하기 위해 붕괴 강도비를 사용하였고, 이것은 붕괴가 일어날 때의 항복강도 저감계수이다. 단단한 지반에서 측정된 240개의 지진을 이용하고 고유주기, 강성 경화 기울기, 음강성 기울기, 연성 그리고 2{\sim}20%의 감쇠비를 변수로 하여 강도한계 이선형 단자유도 시스템의 붕괴 강도비의 평균과 편차 값들을 구할 수 있도록 통계 분석을 하였다. 비선형 회귀분석을 통해 강도한계 이선형 단자유도 시스템의 붕괴 강도비의 평균과 표준편차를 계산할 수 있는 식을 구하였다. 제안한 식을 이용하여 붕괴 강도비의 확률적 분포를 구하였고, 실제 값과 비교하여 제안한 식의 정확성을 입증하였다.
The purpose of this research is to evaluate the odor exhaust characteristics of Sihwa and Banwol industrial complex during one year in 2007 by the automatic odor analyzer. As the continuous monitoring results on the 54 odor items, the highest average concentrations in two complexes were p-diethylbenzene, ammonia, toluene and methylethylketone. The items haven highest contribution rate in Sihwa and Banwol industrial complex were Dimethyl sulfide, i-Valerie acid, i-Valer aldehyde, Valerie acid, Trimethylamine and Etylmercaptan, Hydrogen sulfide, Dimethyl sulfide, Formaldehyde, Trimethylamine. When the odor concentrations converted into the total odor intensity, The percentages of hour data appeared over 3 degree of odor intensity were 0.5% (40 hr) in Sihwa station and 3.0% (210 hr) in Banwol station, respectively. Over 1 degree of odor intensity which is odor threshold value also were 68.3% in sihwa station and 82.5% in Banwol station, respectively. The highest monthly odor intensity was shown in January and February. Therefore, continuous monitoring system for odor compounds through the odor automatic station seems to be the most efficient method for investigating odor exhaust characteristics.
In this study, the removal efficiency of 24 odorous compounds was measured in diverse control process units of 7 individual chemical companies located in Ban-Wall & Shi-Wha Industrial Complex in Gyeonggi-do, Korea from March to August, 2007. To quantify the removal efficiency rates of major odorous compounds, we collected odor samples from the inside process and both the front and rear side of 7 control process units. As the results of this study, it was shown that toluene, ammonia, trimethylamine (TMA) and acetaldehyde were dominant odorous compounds in the inside process. In addition, VOCs, TMA and acetaldehyde were also detected at higher concentrations in the stacks and 10 (toluene, acetone, ethyl benzene, xylene etc.) out of 24 index compounds were found to have negative removal efficiencies. According to the removal efficiency evaluation of seven odor control facilities, a company equipped with two connected absorption processes was shown to have positive (+) removal efficiencies for 16 odor substances and NH₃, TMA, acetaldehyde, the priority odor substances, which meant the proper control system was installed and operated. Hence, to obtain best removal efficiency of odorous pollutant emission, the database on source characteristics and the development of management techniques of diverse control process units are continually needed.
Formaldehyde is important because of its irritant and toxic properties, mutagenicity and carcinogenicity, In this study, liquid chromatography/mass spectrometry (LC/MS) was used for the analysis of formaldehyde after derivatization with 2,4-dinitrophenylhydrazine (DNPH) cartridge. Analytical parameters such as linearity, repeatability and minimum detection limit were evaluated. The linearity (r²) was 0.9999 when analyte concentration ranges from 50 to 400 ㎍/L. The relative standard deviation (%RSD) was 0.83% for the concentration of 400 ㎍/L, and the minimum detection limit (MDL) was 0.27 ppbv. We investigated the distribution of formaldehyde concentrations based on a total of 96 samples(industrial area : 32, complex boundary line : 32, affected (residential) area : 32) measured at the Shi-Hwa industrial complex from April to October 2006. By the statistical analysis of these measurement data, the average level of formaldehyde from industrial area, complex boundary line, and affected area was 2.7, 2.1, and 2.2 ppb during the daytime (10:00~16:00), and 1.4, 1.1, and 1.6 ppb during the nighttime (19:30~23:00), respectively. And also, we investigated the emission concentrations of formaldehyde from various emission sources of 33 individual companies located in the Shi-Hwa industrial complex from September to November 2006. The results of our study showed that the emission concentrations of formaldehyde greatly varied according to industrial and source types. The emission concentrations of formaldehyde showed in the descending oder of 11.4 ppm for insulation cable process, 2.0 ppm for sand casting process, 1.7 ppm for synthesis rubber process, and 1.3 ppm for hexamine process.
We investigated dilution ratio values of the threshold limit (DRVTL) and 12 odorous compounds from a number of emission points (stack and process) and boundary areas of 10 chemical industries in the Ban-Woll and Shi-Wha Industrial Complex in Gyeonggi Province. The results of our study suggest that differences in odor emission concentrations are caused by such as factors as : suitability and operational conditions of prevention equipment, suitability hood of process and exhaust ventilation system, differences of raw materials of chemical industry. It was found that trimethylamine and hydrogen sulfide recorded the highest contribution from two types of emission points (stack and process), respectively. Show some actual concentration values here, hydrogen sulfide recorded its maximum values from leather industry, while trimethylamine for hexamine production industry. On the other hand, the results of dimethyl sulfide, dimethyl disulfide and methyl mercaptan were not useful, as their concentrations were not significantly high enough to judge from such respect. In the view-point of dilution ratio values of the threshold limit, the average emission ratio of stack and process from 10 chemical industries was 57, 43%, respectively. Therefore, it is important that the odor emission value from process and stack have to minimize and regulate for management of industrial odor.
본 연구에서는 회전 원판 장치에 고분자-계면활성제의 혼합체를 첨가제로 사용하여 난류 유동장에서의 마찰저항 감소효과에 대해서 조사 연구하였다. 세가지의 분자량이 다른 PAA를 마찰저항 감소효과에 영향을 줄 수 있는 여러 인자들에 대헤서 살펴 보았다. 특히 이 연구에서는 이온성 고분자와 계면활성제의복합체가 마찰저항 감소현상에 어떠한 영향을 미치는 지에 대해서 연구하였다. 계면활성제와 고분자첨가제 사이의 형태학적 차이점에 특별한 관심을 가지고 실험을 하였으며 이온성 고분자의 pH에 대한 영향에 대해서도 조사하였다. 고분자와 계면활성제간의 복합체는 거대한 전해질과 같은 거동을 보이며 계면활성제가 고분자의 형태를 변화시켜 고분자의 크기를 확대시킨다. 따라서 이러한 복합체는 단일 고분자계와 비교해서 수력학적부피, 관성반경, 점도등의 값이 크게 나타나며 이렇게 팽창된 고분자는 난류 유동장에서의 마찰저항 감소효율을 증가시킨다.