The effect of the change in air inflow velocity has been investigated at the opening of the malodor emission source to determine its influence on the Complex odor concentration. Both the Complex odor collection efficiency and concentrations were measured according to the change in airflow velocity. When the air inflow velocity was 0.1 m/s, it was observed that some of the generated gas streams were diffused to the outside due to low collection efficiency. In contrast, only the increased gas collection volume up to 0.5 m/s showed no substantial reduction of the Complex odor concentration, which indicates an increase in the size of the local exhaust system as well as the operation cost for the Complex odor control device. When the air inflow velocity reached 0.3 m/s, the Complex odor concentrations not only were the lowest, but the odorous gas could also be collected efficiently. The air inflow velocity at the opening of the malodor emission source was considered the key factor in determining the gas collection volume. Therefore, based on the results of this study, an optimal air inflow velocity might be suggestive to be 0.3 m/s.
질소산화물 등의 배출규제 강화로 인한 사용처의 확대로 SCR(선택적 촉매 환원) 촉매 수요가 증가하고 있으며, 이에 따라 폐촉매 발생량도 증가할 것으로 예상된다. 폐촉매는 지정폐기물로 분류되어 처리시에 비용이 발생하여, 물리적으로 재생하여 재사용 하거나 유가금속을 회수하는 방법으로 재활용하고 있다. 그러나 재생의 횟수가 제한적이고, 유가금속 회수는 비용이 고가이며 촉매의 85~90%를 차지하는 TiO2가 폐기된다는 문제점이 있다. 따라서, 본 연구에서는 SCR 촉매를 경제적이며 지속적으로 사용하기 위해 피독된 SCR 촉매 내 피독물질만 화학적으로 수세 및 정제하고 유가금속/TiO2의 함량을 높이는 최적의 세정 용매를 도출하는 촉매 재활성을 위한 기초연구를 수행하였다. 비교대상 촉매인 Poisoned 촉매를 5가지 세정용매로 화학적 처리결과, acetic acid 용매가 V2O5 1.19 wt%의 높은 함량과 57.6%의 높은 피독물질 제거효율을 나타내며 다른 산 처리 용매에 비해 촉매 재생성이 높은 것으로 분석되었다. 세정 용매의 농도와 세정 시간에 따른 V2O5 함량과 피독물질 제거효율에 미치는 영향을 알아보기 위해 각각 변수를 두어 실험을 진행하였다. 본 연구를 통해 0.1 N acetic acid로 처리한 촉매가 가장 높은 NOX전환율을 나타냈으며, 유가금속/TiO2 함량 또한 높게 나타나 본 연구 목표에 가장 적합한 세정용매로 판단되었다.
Biomass as a renewable energy source has several limitations in terms of the potential for steady supply and its thermal characteristics. This study conducted a thermal weight change analysis and determined its kinetics to address this problem. Sawdust was chosen as the biomass, and PE and PP were the plastics used. Based on the result of thermogravimetric analysis (TGA), the kinetic characteristics were analyzed using Kissinger, Ozawa, and Friedman methods, which are the most common methods used to obtain reaction coefficients and activation energy. The methods used to determine the thermal degradation kinetics were considered feasible for evaluating the pyrolytic behavior of the materials tested. The experimental results of this study provided insights into mixed biomass/plastics pyrolysis kinetics and their optimal operation conditions.
런던협약에 따라 2012년부터 해양투기가 전면 금지 됨에 따라 가축사육과정에서 발생하는 가축분뇨 처리에 있어서 환경적, 경제적인 문제를 보완할 수 있는 효율적 처리기술이 필요하다. 최근 농가당 가축사육 머리수가 증가하고 있어 가축사육수는 급격하게 증가하며, 이로 인해 사육과정에서 발생되는 가축분뇨 발생량은 계속 증가할 전망이다. 가축분뇨는 가축사육 특성에 다라 저장・관리 방법에 따른 뇨와 분을 분리하여 발생하는 액상(Liquid Phase) 및 고상(Soild Phase)으로 구분되며, 분뇨가 세척수와 혼합된 상태로 발생하는 슬러리상(Slurry Phase)으로 구분하여 처리하고 있다. 처리하는 가축분뇨는 수분함량이 높은 경우 퇴비화 시 톱밥등의 수분조절재가 과다로 투입되어 경제성이 낮아지고, 수분함량이 낮은 경우에 액비화시 공정수의 추가 및 희석하는 공정을 별도로 설치해야 되는 경제적인 문제가 발생할 수 있다. 또한 환경공단 악취관리센터 보도자료(2016)에 의하면 2015년도 전국 악취 민원은 15,573건 발생하였으며, 이 중에 농축산시설의 악취민원수가 4,323건(28%)로 높은 비중을 차지하고 있다. 본 연구에서는 가축분뇨를 처리하기위해 환원제로 이용할 경우 실제 SNCR공정에서 상용되고 있는 환원제와 비교하여 NSR비에 따른 NOx의 특성을 알아보고자 하였다.
탄소기반의 유기화합물로 이루어져 있는 바이오매스(Biomass)는 차세대 에너지원으로서의 역할을 기대하고 있으며 풍부한 부존량과 탄소 중립적인 특징을 가지고 있다. 목질계 바이오매스의 구성성분 중 25~35%를 차지하고 있는 리그닌(Lignin)은 복잡하고 거대한 페놀축합물로 이루어져 있는 풍부한 천연 고분자이다. 본 연구에서는 리그닌을 에너지자원으로서 활용을 극대화하기 위하여 회전로상(Rotating bed) 열분해 공정을 구성하였고, 리그닌을 회전로상 열분해 공정에 적용하기 전에 고정층(Fixed bed) 열분해 실험을 실시하였다. 리그닌의 물리・화학적 특성, 열적특성을 분석하였고, 고정층 열분해 공정과 회전로상 열분해 공정을 적용하여 리그닌의 열분해 특성을 분석하였다. 리그닌은 휘발분(volatile matter) 62.9%와 고정탄소(fixed carbon) 32.6%가 주를 이루고 있었으며, 원소분석결과 탄소(C) 62.4%와 산소(O) 30.6%가 주를 이루고 있는 것을 알 수 있었다. 열중량분석(TGA) 결과 리그닌의 중량감소는 500℃의 온도범위 이후 반응이 종료됨을 확인 할 수 있었다. 회전로상 공정에서의 액상생성물은 약32.0%의 생산 수율을 보였으며, 고부가가치 성분인 monomeric phenolics 성분들이 주로 검출되었다. 발열량 측정 결과 약 7,000kcal/kg로 측정 되었고, 시판되고 있는 연료 및 연료보조제와 비교를 통해 연료로서의 수준을 나타내었다. 공정의 특성을 분석하기 위해 컴퓨터 프로그램 전산유체역학(CFD, Computational Fluid Dynamics) 상용 Sofrware인 FLUENT를 사용하였다. 위의 실험과 시뮬레이션을 통해 회전로상 열분해의 액상생성물 특성 분석과 공정의 일반화 가능성을 보고자 하였다.
선택적 촉매환원법(Selective Catalytic Reduction, SCR)에서는 V2O5 주로 계열 촉매가 주로 상용되어 있으며 높은 NOX 저감효율의 장점을 지님에도 불구하고 300~400℃의 좁은 활성범위를 가지고 있는 단점이 있다. 이를 보완하기 위해 최근 저온 SCR촉매에 관한 연구가 활발히 진행되고 있으며, 대표적인 카본류 중에서 비교적 가격이 저렴한 산업 및 농업 부산물을 열분해시켜 형성된 바이오매스 Char를 촉매로 활용하는 방안에 관한 연구가 진행되고 있다. 본 연구에서는 연소공정에서 주로 발생되는 대기오염물질 중 대표적인 물질인 질소산화물(NOX)의 SCR공정에서 반응특성을 고찰하기 위해 Lab-scale 규모의 실험 장치를 구현하였다. 실험에 사용된 음식물 열분해-Char는 600℃ 4시간동안 열분해 후 SCR공정에서 촉매로 활용하여 전이금속담지유무, 온도, 수분유무 등의 실험 조건을 변화시켜 NOX를 효율적으로 처리할 수 있는 조건을 도출하였다. 대상시료의 물리․화학적 특성을 파악하기 위해 공업분석, 원소분석을 수행하였으며, 제조한 촉매의 특성은 질소 흡․탈착법, SEM, ICP, EDX 등을 이용하여 분석하였다. 실험에 사용된 Char의 비표면적은 400 m²/g 이상으로 활성화 전 비표면적보다 100배 이상 증가함을 나타냈다. 실험결과에 따라 전이금속인 Cu를 담지하였을 경우, 담지하지 않은 경우보다 높은 저감효율을 나타냈다. NO의 저감효율은 최고 효율을 보이는 350~400℃ 부근의 영역에서 60% 이상의 저감효율을 보였고 그 이후부터 온도가 증가할수록 감소되는 경향을 나타냈다. 수분을 투입하였을 경우 모든 온도 영역에서 NO 저감효율에 악영향을 미치는 것으로 확인되었으며, 최적 효율대비 약 20%의 차이를 나타내었다. 이는 수분과 NH3와의 경장흡착으로 인해 촉매표면에 NO와 반응에 필요한 NH3의 흡착종이 부족하므로 촉매 표면의 활성저하를 일으키기 때문으로 사료된다.
정부의 국가 중기 온실가스 감축목표를 대내외적으로 공표함에 따라 온실가스 감축에 대한 필요성이 절실해져 온실가스 감축을 위한 기술개발이 활발하지만, 정확한 Non-CO2 온실가스 배출량 파악이 어렵고 감축기술에 대한 조사가 부족한 실정이다. 따라서 본 연구는 감축기술 적용이 가능한 Non-CO2(N2O) 온실가스 배출원을 파악하고 예상 감축량을 마련하는데 그 목적을 두었다. N2O는 대부분 경제 산업활동의 인위적 요소로 인해 발생하며 1970년 산업혁명 이후 꾸준히 증가하는 추세이다. N2O는 연료 연소(고정연소, 이동연소), 산업공정(질산 제조, 아디프산 제조 및 카프로락탐 제조), 폐기물소각공정에서 주로 발생되고 있다. N2O 온실가스 배출량은 IPCC 가이드라인의 기본 배출계수를 적용하여 산정하였고, 산정값들의 평균증가율을 적용하여 배출량을 2020년까지 전망하였는데, 연료 연소 중 고정연소의 2020년 N2O 배출량은 총 5,230,760 tCO2eq으로 전망되었고 이 중 에너지산업 부문의 배출량 전망치가 50% 이상을 차지하였다. 이동연소의 N2O 배출량은 2020년 기준으로 총 1,277,739 tCO2eq으로 전망되었고 총 배출량의 90% 이상이 도로수송의 배출량이 차지할 것으로 전망하였다. 폐기물소각과 미산정배출원(SCR/SNCR)의 N2O 배출량은 2020년 기준으로 각각 총 19,419 tCO2eq, 2,546,502 tCO2eq으로 전망되었다.
매립지에서 발생하는 매립가스는 악취를 발생시켜 주변지역 대기환경을 저해하고 있다. 매립가스의 주성분은 온실가스인 이산화탄소(CO2)와 메탄가스(CH4)로 구성되어 있어, 바이오에너지와 같은 대체에너지 생산 기술 등의 연구에 활용되고 있다. 본 연구에서는 가스화 공정에서 발생하는 RDF char를 이용하여 CO2/CH4 개질 반응을 통해 생성되는 합성가스의 주성분인 CO, H2의 생성 특성에 대해 연구하였다. 1023∼1173K의 온도에서 CH4/CO2 ratio는 1.3으로 고정하여 혼합된 CO2와 CH4를 RDF char와 반응시켜 생성되는 H2와 CO의 변화를 측정하였다. 실험 결과에는 반응 온도가 1123K일 때 SUS bed의 CO2 전환율은 3.2%로 나타났으며, 반면 RDF char에서의 CO2 전환율은 81.7%로 나타났다. 이러한 실험결과로 RDF char는 CO2 개질반응에 촉매 역할을 하는 것으로 판단된다. 반응 후 RDF char 성분 분석 결과에 따라 함량이 높은 CaO는 반응전과 후 비슷한 결과를 나타났고 CO2 전환에 영향을 주지 않아 촉매 역할을 하는 Fe2O3나 TiO2에 의한 것으로 판단된다. 산소가 없는 경우에 RDF char에 의한 CO2와 CH4 개질 반응은 온도 증가에 따라 CO2 전환율은 45.3%(1023K)에서 83.16%(1173K)로 증가하였고 CH4 전환율은 10.2%(1023K)에서 27.0%(1173K)로 증가하였다. 또한 산소가 있는 경우는 산소 없는 경우보다 CH4 전환율은 1173K에서 27.0%에서 41.1%로 증가하고 발생가스의 H2 비율은 15.8%에서 22.3%로 증가한 것으로 나타났다. 이는 RDF char에 의해 메탄과 이산화탄소 개질 반응에 Reforming reaction과 Reverse WG shift reaction, Boudouard reaction, Reverse WG shift reaction에 의한 영향을 받는 것으로 판단된다.
최근 화석연료의 고갈, 정부의 신재생에너지 보급정책에 맞추어 바이오매스에 대한 관심이 높아지고 있다. 바이오매스 가스화 공정은 대표적인 신재생연료의 하나인 바이오매스를 가스화반응을 통해 합성가스를 생산하는 친환경적, 탄소 중립적 열적처리 공정이다. 그러나 바이오매스만을 단독으로 가스화 하였을 경우 수급성 및 낮은 발열량으로 인해 문제점이 제기 되고 있다. 따라서 본 논문에서는 사회적으로 처리문제, 건강위해성 문제가 되고 있는 고발열량의 폐플라스틱을 함께 Co-gasification 함으로써 이를 보완하고자 하였다. 또한 본 연구에서는 반응이 용이한 톱밥형태의 목질계 바이오매스와 폐플라스틱 중 많은 비중을 차지하는 Polypropylene(PP), Polyethylene(PE)를 이용하여 여러 조건 변수에 따른 가스화반응 특성을 파악하고, 이러한 혼합원료를 에너지원으로 활용하는데 기초자료를 제공하고자 한다. 바이오매스와 폐플라스틱의 혼합원료 가스화 특성을 파악하기 위해 회분식 반응기를 이용하여 실험을 하였으며 실험 변수는 반응온도와 공기비, 시료의 혼합비율이 고려되었고, 촉매로써 활성탄, 돌로마이트, 올리바인을 사용하여 각각의 변화에 따른 최적의 반응조건을 도출하고 합성가스 조성 및 생성물의 분포특성을 비교 분석하였다. 주요 합성가스 생성물은 CO, H2, CH4로 실험결과 바이오매스와 폐플라스틱 혼합시료는 반응온도가 증가할수록 탄소가 부분 산화되어 일산화탄소가 생성되는 반응, 탄소가 완전 산화되는 반응, 그리고 탄소와 수분이 반응하여 일어나는 수성가스 반응 등의 영향으로 조성비가 증가하여 가스의 발열량이 증가하였다. 또한 PP, PE 혼합 시료의 경우 바이오매스 단독 시료의 가스화보다 생성물이 상대적으로 많이 발생되었음을 확인할 수 있었으며, 혼합비율이 증가할수록 액상생성물 및 타르성분, 왁스성분이 증가하여 가스 생성물의 양이 줄어드는 것을 확인하였다. 촉매의 경우 돌로마이트를 사용할 경우 H2의 생성율이 가장 높았고 올리바인 촉매의 경우 돌로마이트나 활성탄에 비해 크게 합성가스 조성에 긍정적인 영향을 미치지 못했다.
폐기물을 이용한 자원화 또는 재생 가능한 원료를 활용한 기술로 기존 원료비용을 절감하고 폐기물처리에 대한 환경영향을 줄이기 위한 방안이 필요하다. 그러나 국내에서 바이오매스를 이용한 에너지원 개발은 낮은 발열량의 문제 및 공급측면에서 한계를 가지고 있어, 바이오매스와 폐기물 혼합원료에 대한 연구가 필요한 실정이다. 이에 본 연구에서는 바이오매스와 폐플라스틱의 혼합원료(라디에타 소나무, 폴리프로필렌)의 동역학적 분해 특성을 비교분석하여 혼합가스화 등의 에너지원 개발에 필요한 기초자료를 제공하고자 한다. 바이오매스(Sawdust), 폐플라스틱(폴리프로필렌) 단일시료 및 각각 1:1로 혼합한 시료에 대하여 Model- free Methods를 이용한 동역학적 특성을 파악하였다. 미분법인 Kissinger Method와 Friedman Method 적분법인 Ozawa Method를 통해 각기 다른 조건의 시료들의 활성화 에너지를 비교하였으며, air를 분위기 가스로 사용하고 승온속도가 20, 30, 40℃/min 일 때 각각 무게 감량이 최대가 되는 온도를 파악하여 분석의 기초자료로 사용하였다. 각각 시료의 활성화 에너지를 Kissinger Method를 이용하여 분석한 결과 톱밥의 경우 46.79kJ/mol으로 낮은 활성화 에너지를 나타냈으며 PP의 경우 75.67kJ/mol로 나타났고, 톱밥과 PP를 각각 1:1비율로 혼합하여 분석한 경우 58.83kJ/mol의 활성화 에너지가 산출되었다. Friedman Method를 이용하여 분석한 결과 톱밥의 경우 평균 29.19kJ/mol의 활성화 에너지를 나타냈으며 PP의 경우 평균값은 72.65kJ/mol 으로 나타났다. 혼합시료의 경우 평균 64.10kJ/mol의 값을 도출해낼 수 있었다. 마지막으로 적분법인 Ozawa Method로 분석한 결과 톱밥의 경우 평균 34.86kJ/mol 의 값을 나타냈으며 PP 단독시료의 경우 평균 69.53kJ/mol로 나타났고 혼합시료의 경우 평균 57.67kJ/mol로 활성화 에너지를 나타냈다. 각각 활성화 에너지를 산출하는 방법에 따라 값의 경향은 비슷하게 나타났으며 혼합한 시료에 대한 활성화가 단일 시료의 활성화 에너지보다 낮은 경향으로 나타났다. 이는 혼합한 시료에 대한 열적 분해시 필요한 에너지가 폐플라스틱의 단독 열적 분해시 보다 적은에너지가 필요하다고 판단되다.
최근 폐기물 자원회수시설은 폐기물을 감량화·무해화하고 소각처리시 발생되는 열을 회수하여 전기 및 난방의 형태로 공급하고 있으며 주민들에게 각종 편의를 제공하는 등 지역의 중요한 에너지원으로 자리하고 있다. 그러나 계절별로 폐기물 발생량, 성상 및 난방 열수요가 불균일하므로 에너지자원으로의 활용도는 높지 않다. 따라서 본 연구에서는 폐기물 중간처리시설로서 자원회수시설들의 에너지 생산 및 활용실태를 파악하고 이를 효율적으로 이용하기 위한 기초자료를 확보하고자 한다. 에너지회수효율의 평가를 위해 수도권 소재의 생활폐기물 자원회수시설 5곳을 대상으로 2011년~2013년의 월별 에너지 생산, 손실, 공급량 등을 조사하였으며 이를 바탕으로 회수율법, R1, 손실율법을 이용하여 효율을 산정하였다. 4개 시설 전체 에너지 회수 효율을 산정한 결과 2013년 기준 회수율법 0.70, R1 0.81, 손실율법 0.68을 나타내어 산정방법별로 큰 차이가 있음을 알 수 있었다. 따라서 정확한 에너지효율 산출을 위해서는 투입되는 에너지와 회수되는 에너지의 범위를 일관되게 적용하는 방안을 검토하였다. 대상 시설 중 한 곳에서는 대기오염방지시설의 규모가 크고 옥외 노출로 인해 방열손실 및 기타 열손실이 많아 낮은 에너지회수효율을 보였으며 이는 시설구조와 공정개선을 통한 에너지효율을 향상시킬 수 있음을 파악하였다. 회수율법을 적용하는 경우 계절별로는 하절기에 5개 시설 평균 63.4~68.9%의 회수효율을 나타낸 반면, 하절기를 제외한 연평균 회수효율은 71.2~76.1%를 나타내었는데, 이는 하절기에 열수요가 감소하여 생산된 에너지를 제대로 활용하지 못했기 때문인 것으로 판단되므로 계절적 에너지 이용효율을 제고할 수 있는 방안을 모색하였다. 전기를 생산하는 시설은 2곳이었으며 이들 시설은 하절기에 에너지 회수효율이 비교적 높게 나타나 에너지 회수방법을 다양화하였을 경우 그 효율도 높아짐을 확인할 수 있었다.
기체연료를 사용하는 중대형 보일러 및 청정연료인 LNG를 사용하는 복합화력발전소에서 비정기적, 비연속적으로 입자상 오염물질이 상당량 배출되고 있다. 하지만 국내 환경오염 방지법규에서는 구체적인 배출제한 등의 규제가 없으며 문제의 심각성을 인지하지 못하고 있다. 입자상물질의 배출원인은 배열회수보일러 내부의 모듈, Pin tube 및 각종 철골 구조물들이 배기가스에 의한 열팽창 및 부식 등으로 인해 탈리되어 진다. 화력발전소의 경우 연료 중 황산화물 및 산가스에 의한 침식, 장기간 고온 노출에 의한 부식이 이루어지며, 특히 계획예방 정비 기간이 길어질수록 배출되는 철산화물의 양이 많아짐으로서 인근 지역의 피해가 커지고 있다. 그러나 실질적인 배출원 조사 및 주변 환경에 대한 영향평가, 적용 가능한 기술개발의 시도가 현재까지 전무한 실정이다. 현재, 계획예방 정비시 Air blowing, CO2 blasting을 통하여 일부 제거하고 있으나, 대부분의 입자상물질은 복합화력발전시설 인근의 건물과 도로에 낙진하여 지역주민의 건강과 재산상 피해를 주어 민원을 유발시키고 있다. 따라서 천연가스를 연료로 하는 복합화력 가스터빈의 계획예방 정비 후 첫 기동시(0~100% Load) 배출되는 입자상물질에 대한 기초조사를 실시하여 그 실태를 파악해 보고자 하였다. ‘A’ 복합화력발전소의 가스터빈을 대상으로 약 60일간의 계획예방 정비가 끝난 후 기동 시 3일 동안 연돌로 배출되는 먼지를 측정하였다. 그 결과 먼지의 배출량은 배기가스 배출가스량이 가장 많은 시점인 Base load에서 약 70~1,065mg/Sm³으로 가장 높았고, 이후 재 가동시에는 0.7~5.3mg/Sm³으로 미량 배출되었다. 또한 배열 회수보일러 내부에서 시료를 채취하여 체분석 및 EDX, SEM 분석을 통해 입자상오염물질의 입경범위, 성분, 입자모양를 분석하였다. 분석결과 0~1,000μm 분포범위에서 1μm 이하 범위의 먼지는 10% 이하이며, 대부분의 먼지는 약 1~10μm 이상의 먼지가 차지하는 것으로 나타났다. 또한 먼지의 90% 이상이 Fe, O이었으며, 이를 통해 입자상의 오염물질이 철산화물인 것을 알 수 있었고 일부분 배출먼지에 황산화물이 검출되기도 하였다. SEM 분석결과 입자의 표면이 거칠고 모양과 크기가 모두 다양하였으며, 서로 다른 미세입자가 응집되어 있는 것을 확인할 수 있었다.
현재 폐기물 자원회수시설은 폐기물을 감량화‧무해화하고 소각처리시 발생되는 열을 이용하여 지역 기저 난방부하를 담당하고 있으며, 주민들에게 각종 편의를 제공하는 등 지역의 중요한 에너지원으로 자리하고 있다. 2012년 신재생에너지 통계에 따르면 전체 신재생에너지의 원별 공급비중에 있어서 폐기물에너지가 차지하는 비중은 67.8%로 나타나며, 그 중 산업폐기물 및 생활폐기물의 자원회수시설로부터 회수되는 에너지 생산량이 차지하는 비중은 전체 폐기물 에너지 생산량의 약 35%로 신재생에너지의 전체 공급비중을 고려할 경우 23.6%에 해당할 만큼 매우 중요한 비중을 차지하고 있다. 그러나 폐기물의 발생 및 성상이 불균일하고 특히 계절별로 상당한 차이가 있으며, 난방 열수요 또한 계절별로 큰 차이를 가지고 있다. 그로인해 에너지자원으로의 활용도는 감소한다. 본 연구에서는 폐기물 중간처리시설로서 자원회수시설들의 에너지 생산 및 활용실태를 파악하고 이를 효율적으로 이용하기 위한 기초자료를 확보하고자 한다. 에너지 전환효율을 평가하기 위해 수도권 소재 생활폐기물 자원회수시설 5곳을 대상으로 2011년 ~ 2013년 월별 에너지 생산, 손실, 공급량 등을 조사하였으며, 회수율법, R1, 손실율법을 이용하여 에너지 회수효율을 산정하였다. 5개 시설 전체 에너지 회수효율을 산정한 결과, 2013년 기준 회수율법 69.8%, R1 80.9%, 손실율법 68.8%를 나타내어 산정방식별로 큰 차이가 있음을 알 수 있었다. 본 연구에서는 회수된 여열을 사용량 기준으로 산정하였으며, 4개 시설(2012년 가동된 E 시설 제외) 3년간 평균 71.1%로 기존의 여열 생산량 기준으로 산정된 회수효율 75.5%와 다소 차이가 있었다. 각 시설별로 회수율법을 이용하여 최근 3년간 평균 에너지회수효율을 산정한 결과, A, B, C, D, E시설은 각각 74.6%, 69.3%, 71.7%, 64.6%, 61.0%을 나타내었으며, 시설규모가 가장 작은 E시설이 가장 회수효율이 낮았다. D시설의 경우, 대기오염방지시설 규모가 크고 옥외에 노출되어 있어 방열 및 기타 열손실이 많았으며, 이로 인해 에너지 회수효율이 비교적 낮았다. 계절별로는 하절기에 5개 시설 평균 63.4% ~ 68.9%의 회수효율을 나타낸 반면, 하절기를 제외한 연평균 회수효율은 71.2% ~ 76.1%를 나타내었는데, 이는 하절기에 열수요가 감소하여 생산된 에너지를 제대로 활용하지 못 했기 때문인 것으로 판단된다. 전기를 생산하는 시설은 2곳이었으며, 이들 시설은 하절기에 에너지 회수효율이 비교적 높게 나타나 에너지 회수방법을 다양화하였을 경우 그 효율도 높아짐을 확인할 수 있었다.
폐기물들을 통해 자원화 및 재생 가능한 원료를 활용하여 원료비용 및 처리에 따른 비용절감을 통해 폐기물 축적에 대한 환경영향을 줄이기 위한 방안을 모색할 필요가 있다. 그러나 현재 바이오매스 및 폐기물 각각의 원료에 대한 가스화 연구는 많이 수행되고 있으나 혼합원료에 대한 연구는 미비한 실정이다. 이에 본 연구에서는 바이오매스와 폐플라스틱을 혼합한 신연료(라디에타 소나무, 폴리에틸렌, 폴리프로필렌)를 이용한 촉매・혼합가스화를 통해 에너지원으로 활용하는 데 기초자료를 제공하고자 한다. 바이오매스와 폐플라스틱의 촉매・혼합가스화 특성을 살펴보기 위해 배치반응기를 이용하여 실험을 수행하였다. 반응온도는 700~900℃, 공기비는 0.2, 바이오매스에 대한 플라스틱의 혼합비는 20%, 40%로 하였고, 활성탄, 돌로마이트, 올리빈 촉매를 이용하여 최적의 반응조건을 도출하였다. 실험결과 바이오매스와 폐 폴리프로필렌 혼합시료는 반응온도가 증가할수록 Boudouard reaction, Water gas reaction 등의 영향으로 H2, CO, CH4 등의 조성비가 증가하여 가스의 발열량이 증가하였다. 촉매를 이용한 가스화반응에서는 돌로마이트를 사용할 경우 H2 생성율(34.03~35.58%)이 가장 높았고, 그 외 CO 26.70~27.52%, C2H2 0.29~0.34% C2H4 7.85~11.56%가 생성되었다. 활성탄 역시 H2생성에 영향을 주었으나 다양한 크기의 세공들을 이용하여 흡착을 통한 촉매역할을 하는 활성탄보다 돌로마이트의 CaO, MgO가 Carbon formation reaction을 활발하게 진행시켜 고분자 물질들이 촉매분해를 통해 H2생성이 활발하게 진행된 것으로 사료된다. 올리빈의 경우 돌로마이트나 활성탄에 비해 크게 합성가스 조성의 긍정적인 역할을 하지 못하였다.
본 연구는 3개소의 소형 고형연료 사용시설의 대기 배출특성을 분석하였다. 고형연료 사용시설은 RPF 사용 시설과 RDF 사용시설로 구분하였으며, 고형연료 품질특성, 입자상물질 배출특성, 가스상물질 배출특성, 다이옥신 배출특성 및 대기오염물질 배출 상관성분석, 배출원단위 특성을 바탕으로 다음과 같은 결론을 얻었다.
1. 고형연료제품의 RPF제품의 30개 시료의 발열량은 6,004kcal/kg ~ 10,153kcal/kg의 큰 편차를 보이며, 평균 7,846kcal/kg으로 조사되었다. RDF제품의 경우 11개 시료에서 3,065kcal/kg ~ 5,694kcal/kg으로 평균 4,526kcal/kg으로 조사되어, 연소조건의 안정을 위해서는 제품생산의 균질화가 필요한 것을 확인할 수 있으며, 대상시설 반입연료의 품질기준은 만족하나 3개시설 반입고형연료제품 발열량 변화폭이 큰 것으로 확인 되어 고형연료(SRF)를 통합할 경우 연소조건 및 대기오염물질 배출 변동 폭은 더 클 것으로 예상된다.
2. 주요 대기오염물질 배출특성을 살펴본 결과, 입자상물질의 경우 발생되는 양이 방지시설 전단 RPF의 A시설 423.61mg/Sm³, B시설 1223.18mg/Sm³, RDF의 C시설 973.4mg/Sm³ 이며, 보일러 출구 온도의 경우 온도가 높을수록 영향을 크게 받는 것을 확인할 수 있었으며, 온도제어가 오염물질 발생량을 줄일수 있는 방안으로 사료되었다. 가스상 물질의 경우 염화수소와 황산화물 농도가 다른 가스상 물질보다 높은 배출경향을 보이며, 특히 RPF사용시설이 RDF사용시설보다 높은 배출농도 특성을 보이는 것으로 확인되었다. 이는 발열량에 기인한 발생가스량과 밀접한 관계를 시사하며, 완전연소가 되도록 온도, 체류시간, 난류, 산소농도(T.T.T.O)가 조절되어야 하나 소형고형연료사용시설의 운전원이 전문적인 관리자가 아니기 때문에 일시에 다량투입 하는 등 불완전연소를 초래하여 일산화탄소 농도가 주기적으로 높게 배출되는 경향을 나타내고 있다.
3. 배출원단위 특성 검토 결과, 먼지를 제외한 황산화물, 질소산화물, 염화수소의 배출원단위가 국내 종규모 산정 적용 배출원단위 보다 높은 값을 보여 유지관리기준 마련에 세밀한 검토가 필요할 것으로 보인다. 주요 대기오염물질 배출 상관성특성 분석 결과, 대기오염물질 사이의 낮은 상관성을 보이는 것으로 나타났다.
고분자 합성기술의 발전에 따른 플라스틱의 생산율이 높아짐에 따라 배출되는 폐 플라스틱의 다양성에 따른 환경오염 문제의 관심사로 대두되면서 폐 플라스틱 처리의 해결 필요성이 높아지고 있다. 화석연료의 고갈로 인하여 신재생에너지에 대한 관심이 높아지고 있는 현재 폐기물을 대상으로 하는 가스화 공정은 환경문제와 에너지 문제를 동시에 해결할 수 있는 공정 중 하나이다. 가스화는 소각기술과는 달리 열화학적 변환기술로서 환원성분위기에서 반응이 진행되므로 폐기물 내의 탄소 및 수소 성분은 일산화탄소 및 수소가 주성분인 고부가 가치의 가스를 생산하여 활용성이 높은 재생에너지를 생산하는 기술이다. 생산된 합성가스는 CO, H₂가 주성분으로서 다양한 공정을 거쳐 합성하면 다양한 원료 물질의 제조가 가능하다. 또한 친환경적인 수소생산을 위해서는 원료선정에 있어서 자원화 및 재생 가능한 원료로 활용하는 것이 바람직하며 이러한 측면에서 수소를 생산하는 다양한 방법 중 폐자원인 바이오매스 및 폐기물을 이용한 가스화를 통해 수소생산방식이 유용하다고 할 수 있다. 폐자원을 자원화 하는 경우 원료 비용 및 처리에 따른 비용절감 효과를 이룰 수 있다. 국내외에서 바이오매스 및 폐기물 각각의 원료에 대한 가스화 실험은 많이 수행되었으나 혼합원료에 대한 연구는 매우 적은 상황이다. 본 연구에서는 목질계 바이오매스 중 반응이 용이한 톱밥과 폐플라스틱 중 많은 비중을 차지하는 polypropylene, polyethylene을 혼합비율에 따른 가스화 반응특성을 알아보는 연구를 수행하였다. 폐 플라스틱 가스화를 통하여 저 발열량을 가지는 물질과 함께 넣어줌으로써 고발열량의 생성물을 생성시켜 줄 것으로 사료된다. 이를 이용하여 합성가스 조성, 탄소전환율, 냉가스효율등의 가스화 효율을 연구하고자 한다. 혼합가스화의 변수별 가스화반응 특성을 알아보기 위해 회분식 가스화 반응기를 이용하여 실험을 수행하였으며 시료 입자크기에 따른 영향을 최소화하기 위해 입자크기를 균일하게 분쇄, 혼합하여 사용하였다. 가스화의 변수는 반응온도와 Equivalence Ratio, 시료혼합비율이며, 각각의 변화에 따른 합성가스 조성 및 수소수율, 일산화탄소 수율변화 등 실험적인 가스조성 변화의 영향을 파악하여 최적 원료 혼합조건을 파악하였다.