검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2015.11 서비스 종료(열람 제한)
        최근 화석연료의 고갈, 정부의 신재생에너지 보급정책에 맞추어 바이오매스에 대한 관심이 높아지고 있다. 바이오매스 가스화 공정은 대표적인 신재생연료의 하나인 바이오매스를 가스화반응을 통해 합성가스를 생산하는 친환경적, 탄소 중립적 열적처리 공정이다. 그러나 바이오매스만을 단독으로 가스화 하였을 경우 수급성 및 낮은 발열량으로 인해 문제점이 제기 되고 있다. 따라서 본 논문에서는 사회적으로 처리문제, 건강위해성 문제가 되고 있는 고발열량의 폐플라스틱을 함께 Co-gasification 함으로써 이를 보완하고자 하였다. 또한 본 연구에서는 반응이 용이한 톱밥형태의 목질계 바이오매스와 폐플라스틱 중 많은 비중을 차지하는 Polypropylene(PP), Polyethylene(PE)를 이용하여 여러 조건 변수에 따른 가스화반응 특성을 파악하고, 이러한 혼합원료를 에너지원으로 활용하는데 기초자료를 제공하고자 한다. 바이오매스와 폐플라스틱의 혼합원료 가스화 특성을 파악하기 위해 회분식 반응기를 이용하여 실험을 하였으며 실험 변수는 반응온도와 공기비, 시료의 혼합비율이 고려되었고, 촉매로써 활성탄, 돌로마이트, 올리바인을 사용하여 각각의 변화에 따른 최적의 반응조건을 도출하고 합성가스 조성 및 생성물의 분포특성을 비교 분석하였다. 주요 합성가스 생성물은 CO, H2, CH4로 실험결과 바이오매스와 폐플라스틱 혼합시료는 반응온도가 증가할수록 탄소가 부분 산화되어 일산화탄소가 생성되는 반응, 탄소가 완전 산화되는 반응, 그리고 탄소와 수분이 반응하여 일어나는 수성가스 반응 등의 영향으로 조성비가 증가하여 가스의 발열량이 증가하였다. 또한 PP, PE 혼합 시료의 경우 바이오매스 단독 시료의 가스화보다 생성물이 상대적으로 많이 발생되었음을 확인할 수 있었으며, 혼합비율이 증가할수록 액상생성물 및 타르성분, 왁스성분이 증가하여 가스 생성물의 양이 줄어드는 것을 확인하였다. 촉매의 경우 돌로마이트를 사용할 경우 H2의 생성율이 가장 높았고 올리바인 촉매의 경우 돌로마이트나 활성탄에 비해 크게 합성가스 조성에 긍정적인 영향을 미치지 못했다.
        2.
        2015.05 서비스 종료(열람 제한)
        폐기물을 이용한 자원화 또는 재생 가능한 원료를 활용한 기술로 기존 원료비용을 절감하고 폐기물처리에 대한 환경영향을 줄이기 위한 방안이 필요하다. 그러나 국내에서 바이오매스를 이용한 에너지원 개발은 낮은 발열량의 문제 및 공급측면에서 한계를 가지고 있어, 바이오매스와 폐기물 혼합원료에 대한 연구가 필요한 실정이다. 이에 본 연구에서는 바이오매스와 폐플라스틱의 혼합원료(라디에타 소나무, 폴리프로필렌)의 동역학적 분해 특성을 비교분석하여 혼합가스화 등의 에너지원 개발에 필요한 기초자료를 제공하고자 한다. 바이오매스(Sawdust), 폐플라스틱(폴리프로필렌) 단일시료 및 각각 1:1로 혼합한 시료에 대하여 Model- free Methods를 이용한 동역학적 특성을 파악하였다. 미분법인 Kissinger Method와 Friedman Method 적분법인 Ozawa Method를 통해 각기 다른 조건의 시료들의 활성화 에너지를 비교하였으며, air를 분위기 가스로 사용하고 승온속도가 20, 30, 40℃/min 일 때 각각 무게 감량이 최대가 되는 온도를 파악하여 분석의 기초자료로 사용하였다. 각각 시료의 활성화 에너지를 Kissinger Method를 이용하여 분석한 결과 톱밥의 경우 46.79kJ/mol으로 낮은 활성화 에너지를 나타냈으며 PP의 경우 75.67kJ/mol로 나타났고, 톱밥과 PP를 각각 1:1비율로 혼합하여 분석한 경우 58.83kJ/mol의 활성화 에너지가 산출되었다. Friedman Method를 이용하여 분석한 결과 톱밥의 경우 평균 29.19kJ/mol의 활성화 에너지를 나타냈으며 PP의 경우 평균값은 72.65kJ/mol 으로 나타났다. 혼합시료의 경우 평균 64.10kJ/mol의 값을 도출해낼 수 있었다. 마지막으로 적분법인 Ozawa Method로 분석한 결과 톱밥의 경우 평균 34.86kJ/mol 의 값을 나타냈으며 PP 단독시료의 경우 평균 69.53kJ/mol로 나타났고 혼합시료의 경우 평균 57.67kJ/mol로 활성화 에너지를 나타냈다. 각각 활성화 에너지를 산출하는 방법에 따라 값의 경향은 비슷하게 나타났으며 혼합한 시료에 대한 활성화가 단일 시료의 활성화 에너지보다 낮은 경향으로 나타났다. 이는 혼합한 시료에 대한 열적 분해시 필요한 에너지가 폐플라스틱의 단독 열적 분해시 보다 적은에너지가 필요하다고 판단되다.