Vulnerable populations in healthcare facilities are more sensitive to exposure to indoor air pollutants, and therefore are more affected by such pollutants than the general population. This was the underlying reason why studies of indoor air pollutant concentration distribution and health risk assessment have been conducted targeting facilities, such as daycare centers, medical facilities, elderly care facilities, and postnatal care centers. However, previous studies have mainly focused on daycare and medical facilities for their research, and relatively speaking, studies conducted on the other venues are lacking. Therefore, this study aims to present the current status of indoor air quality and perform a health risk assessment in regard to Formaldehyde exposure at postnatal care centers and elderly care facilities. Here, the study focused on facilities that had undergone pollution level inspections from January 2017 to December 2021. A total of 81 postnatal care centers and 48 elderly care facilities were selected as the subject of the study. Then, the study utilized concentrations of five elements (CO2, HCHO, PM10, PM2.5, TBC) to determine the status of indoor air quality of both postnatal care centers and elderly care facilities. For health risk assessment, HCHO concentration was used. The investigation demonstrated that the yearly average concentration of the five elements stood within the indoor air quality maintenance standards, and the ratio of PM2.5 to PM10 in the two types of facilities was distributed as high as about 70%. In addition, the study showed that HCHO and TBC demonstrated a positive correlation when the relationship between indoor temperature and humidity with the five elements was examined. The health risk assessment showed that the cancer risk level of postnatal care center users stood below 10-6, below the level that is perceived as an acceptable risk. The cancer risk of workers from both postnatal care centers and elderly care facilities and elderly care facility users exceeded the acceptable risk level of 10-6, but was shown to be below 10-4, the maximum acceptable risk.
Following the social requirement to strengthen field supervision of the asbestos containing materials (ACM) abatement process with regard to asbestos school buildings, this study was conducted to understand the status and characteristics of airborne asbestos that may potentially occur after the ACM abatement process is completed. In the area where a series of asbestos abatement processes were finally completed, comprehensive area air sampling was performed. For sample analysis, Transmission Electron Microscopy (TEM) was used according to The Asbestos Hazard Emergency Response Act (AHERA) method and Phase Contrast Microscopy (PCM) analysis was also performed. Airborne asbestos was detected in 29.5% of the total samples, and the average concentration was 0.0039 ± 0.0123 s/cc (12.3 ± 38.9 s/mm2). 4.5% of the total samples exceeded the AHERA standard (70.0 s/mm2) and the average concentration was 0.0528 ± 0.0256 s/cc (167.2 ± 82.0 s/mm2). Airborne asbestos was no longer detected at the point when AHERA is exceeded after re-cleaning. Most of the detected asbestos was chrysotile (94.4%) and the structure types of asbestos were Matrix (41.4%), Fiber (39.9%), Bundle (10.8%), and Cluster (7.8%). Among the asbestos structures detected through transmission electron microscope analysis, the asbestos structures satisfying PCM-equivalent structures were found to be 6% of the detected asbestos, indicating that there is a limitation of the PCM analysis to check the airborne asbestos in that area. As a result of reviewing the status of airborne asbestos that may potentially occur and the type and dimensions of asbestos structure detected in the area, since the airborne asbestos exposure caused by poor field supervision for the ACM abatement process could not be ruled out, thorough management is necessary. In addition, the result of this study could be used as scientific evidence for establishing and strengthening policies related to ACM abatement, including cases of school buildings.
2019년 1월부터 11월까지 서울약령시장에서 유통되는 식·약 공용 농산물 총 187건을 대상으로 곰팡이독소 동시 다성분 SPE 컬럼으로 정제 후 LC-MS/MS로 분석하여 곰팡이독소 8종의 동시분석법 유효성을 검증하고, 확립된 분석법으로 곰팡이독소 오염도 파악 및 위해평가를 실시하였다. LC-MS/MS를 이용한 동시분석법의 유효성 검증은 매질효과, 직선성, 검출한계, 정량한계, 정확성 및 정밀성으로 하였다. 매질 보정 검량선의 상관계수(r2)는 0.9999이상의 우수한 직선성을 보였고, 검출한계는 0.02-0.11 μg/ kg였고, 정량한계는 0.06-0.26 μg/kg였고, 회수율은 81.2- 118.7%였고, 상대표준편차는 0.33-8.90%로 우수한 재현성을 나타냈다. 확립된 분석법으로 검사한 결과 기준이 설정된 아플라톡신은 B1이 1.18-7.29 μg/kg (기준: 총 아플라톡신 15.0 μg/kg이하, B1 10.0 μg/kg이하)으로 기준 이내로 검출되었고, 아플라톡신 B2, G1 및 G2는 검출되지 않았다. 기준이 미설정된 곰팡이독소는 푸모니신(0.84-14.25 μg/ kg) 오크라톡신 A (0.76-17.42 μg/kg) 및 제랄레논(1.73- 15.96 μg/kg)이 검출되었다. 위해평가 결과 아플라톡신 B1의 1일 인체노출량은 0.00052 μg/kg b.w./day였고, 푸모니신 및 제랄레논의 일일섭취한계량 대비 각각 0.04%, 0.24% 였고, 오크라톡신 A의 주간섭취한계량 대비 4.76%로 우리나라 국민들이 식·약 공용 농산물 섭취로 인한 곰팡이 독소 위해도는 안전한 것으로 평가되었다.
2018년과 2019년에 서울에서 유통 중인 건고추 및 고춧가루에 대해 잔류 농약 안전성 검사를 실시하였다. 총 101건의 시료에 대해 71종 농약을 모니터링한 결과 잔류허 용기준을 초과한 시료는 없었으나 잔류농약이 검출된 시료는 87건으로 86.1%의 검출률을 나타내었다. 건고추와 고춧가루 검출률은 각각 73.3%, 91.5% 이었다. 고춧가루의 잔류농약 검출률이 건고추에 비해 다소 높게 나타났 다. 검출된 농약은 12종이었으며 모두 작물보호제 지침 서에 따른 고추에 사용가능한 살균제 및 살충제이었다. 가장 다빈도로 검출된 농약은 pyraclostrobin이었으며 다음으로 flubendiamide, azoxystrobin, chlorantraniliprole 순이었다. 검출된 농약에 대한 위해성을 ADI(Acceptable daily intake)대비 식이섭취율로 산출하여 평가한 결과, %ADI는 모두 5.66E-05 – 3.34E-02%로 나타나 안전한 것으로 나타났다.
This study conducted a survey on environmental awareness and analyzed outdoor PM10 and heavy metals (cadmium, lead) for 60 local residents living in the Gwangyang national industrial complex from July 2019. 40.0% of subjects responded that local environmental pollution was serious. Especially, there was a high proportion of residents living near the industrial complex or roads where it was perceived that local environmental pollution was serious. The average concentration of PM10 in the outdoors of the houses was 10.95 μg/m3 and the average concentration of heavy metals in PM10 was 1.90 ng/m3 for Cd and 24.92 ng/m3 for Pb. Overall, the average concentration of PM10 and heavy metals revealed a tendency to be high in the houses located near the industrial complex or the roads. As a result of a risk assessment carried out, the cancer risk of Cd was estimated to exceed 106 in the CTE, RME and Monte Carlo analysis. These results suggest that the urgent implementation of specific environmental health education for local residents is necessary.
This study was performed to investigate the characteristics of VOCs and carbonyl compounds emitted by smallscale master, offset, and screen printing facilities. During the printing process, concentration measurements of indoor samples were made at each on the printer equipment and the indoor center of the facility. In each case, the window or door served as natural ventilation, and concentration measurements of outdoor samples were made at each air exit point. The results showed that in all printing facilities, the levels of VOCs and carbonyl compounds were much higher in printer equipment compared to indoor levels. Comparative examination of VOCs between printer equipment and the indoors of the facility, the main species of master and offset printer equipment were Methyl isocyanide, 2,2,6-Trimethyloctane, 2,2-Dimethyldecane, 3,7-Dimethyldecane, Toluene, Acetonitrile, and 3- Methoxy-3-methylbutanol. The main species of the indoors of master and offset facilities were Toluene, 2,2,6- Trimethyl-octane, Isopropyl alcohol, 3-Methoxy–3- methylbutanol, Nonane, and Acetone. However, in the screen printing facility, the printer and indoor emission compounds were the same such as 2-Methyl-cyclopentanone, Cyclohexanone, Ethylbenzene, and p-Xylene. Among the compounds released to the outside, Toluene and Acetone were the most abundant species of VOCs and carbonyl compounds, respectively.
This study examined the relevance of impact factors using survey data, standardized mortality rates, and medical utilization rates of study subjects in the Namhae and Hadong regions. The study subjects were found to have lived in the area for more than 20 years, and in terms of lifestyle, they did not smoke, but the rate of drinking was high and showed little exercise. As a result of analysis through logistic regression analysis, it was found that angina pectoris, myocardial infarction and anemia were affected by exercise status, and allergic rhinitis disease showed significant results depending on the presence of smoking. The standardized mortality rate of men in chronic lower respiratory tract diseases in the Namhae and Hadong regions was higher than in the nation. In the case of allergic rhinitis, both men and women in Namhae were slightly lower than those in Nation, and in Hadong, both men and women were higher than in Nation.
서울약령시장과 서울경동시장 등에서 유통되고 있는 식약공용 농·임산물 29품목 171건에 대하여 ICP-MS와 수은 분석기를 이용하여 중금속(납, 카드뮴, 비소, 수은) 함량을 분석하고 위해도를 평가하였다. 납, 카드뮴, 비소, 수은의 검출 범위는 각각 ND-4.719 mg/kg, ND-1.019 mg/kg, 0.002-8.696 mg/kg, ND-0.058 mg/kg로 나타났다. 171건의 검체 중 Artemisiae Capillaris Herba(인진호) 1건과 Actinidiae Ramulus et Fulium et Fructus Vermicultus(목천료) 1건에서 각각 카드뮴과 비소 항목이 허용기준을 초과 하여 부적합 판정을 받았으며 나머지는 모두 허용기준 이내였다. 위해도를 평가 했을 때 비발암위해도지수(HI)가 1을 초과한 품목은 없었고, 발암위해도가 납은 모든 품목에서 10-6 이하였으며 비소는 10-4-10-6 으로 나타나 전반적으로 안전한 수준으로 평가되었다. %PTWI는 납, 카드뮴, 비 소, 수은 모두 100이하로 나타났다. 유통중인 식약공용 농 ·임산물의 중금속(납, 카드뮴, 비소, 수은) 함량을 분석하고 비발암위해도지수(HI), 발암위해도, %PTWI를 평가한 결과 안전한 수준으로 평가되었다.
The use of printing inks containing organic solvents by the master, offset and screen printing process implies the release of volatile organic compounds (VOCs) to the work environment. In this study, the volatile content of inks was evaluated by using a thermogravimetric analyzer (TGA), in which the solvent is evaporated. And, to identify the the characterization of VOCs emissions from printing inks, air samples were collected in a thermal extractor (TE) and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Weight loss curves suggest that there are two main stages, such as dry fastening and chemical curing. As the result, the first stage of mass loss (below 100oC) was due to VOC evaporation. At this stage, master and offset inks are slightly stable thermally up to 100oC, but screen inks weight loss increases distinctly beyond 25oC. The volatile content is higher in screen inks than in the master and offset inks. The results of the mass-specific TVOC emission rate of the master, offset, and screen inks were 6.3 μg/(g·h), 8.4 μg/(g·h), and 212.2 μg/(g·h), respectively. Then the TVOC emission rate of the screen inks was 25~33 times higher than that of the master and offset inks. The main species were 1-Ethyl-2-pyrrolidinone, 1,2,4-Trimethylbenzene, 1,2,3-Trimethylbenzene, 1,2,4,5-Tetramethylbenzene, 1-Methoxy-2- propanol, Decane, Undecane, and Nonane.
Indoor air environments for people are recently being observed because the time we spend inside the house or a building throughout the day has been extended during the present circumstances. This is why formaldehyde and volatile organic compounds (VOCs) are regulated, which can cause Sick Building Syndrome (SBS). There might be other VOCs not regulated by law in newly built collective housing, however, in order to compensate for the reduced concentration of regulated VOCs such as benzene, toluene, ethylbenzene, xylene, and styrene. In this study, the concentration of unregulated VOCs in newly built collective housing structures located in the Seoul Special City was researched to find potential indoor hazards for citizens and to prepare basic data for further research.
The goal of this study was to measure the indoor and outdoor fine and ultrafine particulate matter concentrations (PM10, PM1.0) of some houses in Yeosu and in S university in Asan from March to September 2018. PM10 concentration in indoor air in Yeosu area was 18.25 μg/m3, while for outdoor air it was 14.53 μg/m3. PM1.0 concentration in indoor air in the Asan area was 1.70 μg/m3, while for outdoor air it was 1.76 μg/m3, showing a similar trend. Heavy metal concentrations in the Yeosu region were the highest, at Mn 2.81 μg/m3, Cr 1.30 μg/ m3, and Ni 1.11 μg/m3 indoors. Outside, similar concentrations were found, at Cr 3.44 μg/m3, Mn, 2.60 μg/m3, and Ni 1.71 μg/m3. Our analysis of indoor and outdoor PM concentrations in the Asan region, which was carried out using the MOUDI (Micro-orifice Uniform Deposit Impactor) technique, found that PM concentration is related to each particle size concentration, as the concentration of 18 μm and 18-10 μm inside tends to increase by 3.2- 1.8 μm and 0.56-0.32 μm.
This paper proposes a real-time resource allocation algorithm for minimizing the completion time of overall workflow process. The jobs in a workflow process are interrelated through the precedence graph including Sequence, AND, OR and Loop control struc